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Abstract

MINOS stands for Main Injector Neutrino Oscillation Search. It is a long baseline experiment

located in the USA and is composed of two detectors. The Near Detector is at Fermilab,

1 km from the source of neutrinos. The Far Detector is in Minnesota at a distance of 735 km

from the source. Both detectors are steel scintillator tracking calorimeters. MINOS searches

for neutrino oscillations by comparing the neutrino energy spectrum at the Far Detector with

that obtained from a prediction based on the spectrum at the Near Detector. The primary

aim of MINOS is to measure the atmospheric oscillation parameters ∆m2
32 and θ23. CPT

symmetry requires that these parameters should be same for neutrinos and antineutrinos.

Differences between neutrino and antineutrino oscillations would be an indication of new

physics beyond the neutrino-Standard Model (νSM). Additionally, violation of Lorentz or

CPT symmetry could also give rise to oscillations different from that expected from the νSM

predictions, such as neutrino to antineutrino transitions.

This thesis presents the measurements of antineutrino oscillation parameters using an-

tineutrinos comprising a small (7%) component of the 7.1 × 1020 protons on target (POT)

NuMI neutrino beam. The antineutrino component, being at a higher energy, is not able to

constrain the parameters very precisely. Nevertheless, it helps provide additional bounds on

the value of ∆m2
32 on top of the constraints provided by the analysis of antineutrino data

obtained in a dedicated antineutrino running. Assuming sin2(2θ23) = 1 the data excludes

∆m2
32 > 4.49 × 10−3 eV2 at a 3σ significance. The second analysis explores the possibility

of Lorentz and CPT violation in the neutrino sector by testing a model based on Standard
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Model Extension (SME). The model allows the possibility of neutrino to antineutrino transi-

tions. The complete low energy neutrino and antineutrino datasets obtained in 10.56× 1020

POT exposure are fitted to the SME model. No indication of Lorentz or CPT violation has

been found. The data also provides world’s first ever constraints on the SME parameters

g̃ZTµµ , g̃ZTττ , (cL)TTµµ , and (cL)TTττ . A study of the performance of the Far Detector in the six

years of its running, with regard to the light level obtained from the PMTs, is also shown.

The study shows that light levels from the Far Detector have been very stable over the years

and the detectors will perform well in the MINOS+ era.
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Preamble

Neutrinos have been one of the most mysterious particles despite their abundance in the

universe. When originally proposed [1], neutrinos were believed to be massless particles.

But thanks to the compelling evidence that neutrinos can change flavour (oscillate), we

now know that they have non-zero masses [2]. This is already an evidence for physics

beyond the Standard Model (SM). Much is still unknown about neutrinos and we need

to fully understand their properties. One way to unfold their properties is to study the

relationship of the neutrino and its antiparticle. This thesis looks at the oscillation properties

of antineutrinos. Any difference in the properties of neutrinos and antineutrinos would be

a signature of physics not predicted by the SM. It could be a sign of new particle or new

interactions with matter. It may even indicate a violation of one of the most fundamental

symmetries of quantum field theory: Lorentz and CPT invariance.

Chapter 1 of this thesis gives a brief introduction to the history of neutrino physics,

discusses the theory of neutrino oscillations, and finally gives a summary of results obtained

from various experiments to date.

It is interesting to see whether we can fit the MINOS data using an alternative model.

Chapter 2 discusses an alternative model based on Standard-Model Extension (SME) which

is formed by adding additional terms in the SM Lagrangian which allow Lorentz and CPT

violation. A feature of this model is that it allows neutrino-antineutrino transitions (which

are forbidden in the SM). A brief description of the model and derivation of the oscillation

probabilities is given, followed by a discussion of the expected signal.

xxx



The MINOS experiment, which obtains an intense muon neutrino beam from the Neu-

trinos at the Main Injector (NuMI) beamline at Fermilab, is ideal for studying atmospheric

oscillation parameters. Furthermore, since it is magnetised it can distinguish between neutri-

nos and antineutrinos from the muon tracks formed from their charged-current interactions

in the detector. Chapter 3 gives the details of the design of the MINOS detectors and the

NuMI beam.

The first step in any analysis is the reconstruction of neutrino and antineutrino events. A

precise measurement of the neutrino oscillation parameters requires an accurate measurement

of neutrino energies, which is done through a chain of calibrations. The details of the process

of event reconstruction and detector calibration are given in Chapter 4. This chapter also

describes the method for Monte Carlo simulation which is important for understanding and

interpreting the probabilistic processes of particle physics from the limited data statistics.

Chapter 5 and 6 present the antineutrino and neutrino-antineutrino oscillation analyses,

respectively, and report the findings.

Finally Chapter 7 summarises the results of this thesis and briefly discusses the future

prospects of MINOS and for the field in general.
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Chapter 1

The History and Theory of Neutrino

Physics

1.1 The Beginning

When the phenomenon of radioactivity was discovered in 1892, the β-decay process was

understood to be the process where only an electron is emitted from the radioactive nucleus.

In the studies performed by Otto Hahn and Lise Meitner [3] the electron was thought to

be emitted at a fixed energy corresponding to the change in binding energy of the nucleus.

But after further experimentation, in 1911, they found that the electrons had an underlying

continuous spectrum [4]. In 1914, James Chadwick made the discovery that the beta decay

spectrum is continuous, and not monoenergetic [5]. It seemed to violate the conservation

laws and therefore it was troubling to the physicists at the time. One explanation for the

continuous spectrum in the early 1920s was that the electron lost varying fractions of energy

while travelling through the medium containing the radioactive nuclei. In 1927, Ellis and

Wooster performed experiments [6] to detect this missing energy in a calorimeter, but failed

to detect it, thereby disproving the above hypothesis.

In 1930, Wolfgang Pauli wrote an open letter [1] to a conference in which he proposed

“a desperate remedy to save the exchange theorem of statistics and the law of conservation

1
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of energy.” He proposed that a new particle with no electrical charge and spin 1
2

was being

emitted along with the electron during β-decay. He named the particle ‘neutron’. This

particle was required to have a mass less than 1% of the proton mass. The continuous

β-decay spectrum would then be explained by assuming that in addition to an electron, a

‘neutron’ is also emitted such that the sum of energies of the neutron and electron is constant.

Later, the “real neutron” was discovered by Chadwick in 1932 [7], but it was realised to be

the particle in the nucleus which emitted the electron and the neutrino in the process of

β-decay [8, 9, 10, 11]. Around the same time, Francis Perrin [12] and Enrico Fermi [13, 14]

proposed the idea of the neutrino as a massless particle created during the process of β-decay.

In 1933, Enrico Fermi developed his successful theory of β-decay, constructed using the

neutrino, electron, neutron and the proton, analogous to the earlier theory of electromagnetic

interactions. With this a new field of theoretical physics came into existence - the field of

Weak Interactions. Fermi adopted the proton-neutron theory of the atom and proposed the

name neutrino for the Pauli’s neutron, meaning “the little neutral one”. The theory requires

the neutrino to carry energy, linear momentum, as well as angular momentum or ‘spin’ from

the decaying nuclei. It is illustrated by the decay of the free neutron:

n→ p+ e− + ν. (1.1)

This theory was also generalised by Gamow and Teller in 1936 [15], and it was able to

describe all β-decay data that had been collected. In his letter, one of Pauli’s major concern

was that the neutrino should already have been seen if it existed. This was addressed by

Hans Bethe and Rudolf Peierls in 1934, who showed that the cross section for the neutrino

to interact with a nucleus is less than 10−44cm2, corresponding to a penetrating power of

1016 km in ordinary matter [16]. Because of the small cross section it was considered an

undetectable particle for many years.

2
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1.2 Discovery of the Neutrino

In 1953, an experiment was set up by Clyde Cowan and Fred Reines at the Hanford

reactor site [17, 18, 19, 20, 21], where they obtained a 2σ signal for the existence of neutrinos.

Since this signal was not conclusive, in 1956, they performed another experiment to make

a direct observation of the neutrino [22]. Their detector was set up close to the Savannah

River nuclear reactor which gave a large flux of neutrinos. These are now known to be

electron antineutrinos. The interaction target in the detector was 200 litres of water with

40 kg of CdCl2 dissolved in it. It was sandwiched between three liquid scintillator layers

which were instrumented with 110, 5” photomultiplier tubes each. The antineutrinos were

detected through inverse β-decay:

ν̄e + p→ e+ + n. (1.2)

A distinct pattern of activity in the detector was required in order to confirm the presence

of neutrinos: 1) Annihilation of a positron with an electron in water which would produce

two 511 keV photons moving in opposite directions and picked up in coincidence in the

scintillator, 2) Capture of the neutron by the dissolved cadmium, emitting a photon or

many photons that would be picked up in the scintillator within 5µs of the initial photon

pair from e+e− annihilation. After months of data collection they had accumulated data

of about three observed neutrinos per hour. To confirm that they were actually observing

neutrinos they shut down the reactor and showed that the rate of these interactions dropped

to zero. Reines was honoured by the Nobel Prize in 1995 for his work on neutrino physics

(Clyde Cowen died in 1974).

1.3 The Weak Interaction

Using the neutrino hypothesis of Pauli, Fermi developed the theory of weak interaction

by analogy with the theory of electromagnetic interaction. If we denote the fermion fields
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for the neutron, the proton, the electron and the neutrino by ui, where i = n, p, e, and νe,

the β-decay matrix element for the four-Fermi interaction can be written as

M = G(unγ
µup)(uνγµue),

where G is the coupling constant and γµ are the Dirac gamma matrices. However, over the

years some modifications of the original form of the four-Fermi interaction were required.

Firstly, the fundamental fields entering the Hamiltonian are fields describing quarks, rather

than hadronic fields like the proton or the neutron. Secondly, Pauli had assumed parity

conservation and, therefore, the interaction had the vector-vector form. With the discovery

of parity violation [23] it was necessary to include an axial component of the form (γµγ5) in

the weak current. The vector-axial (V-A) form of the currents was later noted by Marshak

and Sudarshan, and by Feynman and Gell-Mann [24, 25]. Thus the β-decay matrix element

takes the form

M = G(unγ
µ(1− γ5)up)(uνγµ(1− γ5)ue). (1.3)

Although the four-Fermi interaction in Eq. 1.3 provides an excellent description of the low

energy weak interaction phenomena, it has certain difficulties as a field theory. For instance,

the higher order corrections to any lowest order weak process are divergent. Besides this,

even at the lowest order the theory predicts the total cross section σ(νn) ∝ E2
ν . With

increasing energy this cross section grows without limit, and hence, violates unitarity at

around 300 GeV [26] (first noticed by Heisenberg in 1936 [27]). The basic problem was due

to the fact that the theory is non-renormalisable. The first renormalisable theory of weak

interactions was given by Sheldon Glashow [28], Steven Weinberg [29] and Abdus Salam [30].

This theory predicted a neutral current component to the weak interaction, and masses for
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the exchange bosons (W and Z).

The weak neutral currents were first observed in 1973 in the Gargamelle bubble chamber

in the νµe scattering [31, 32]. The masses of the exchange bosons, W and Z, were first

measured in the UA1 and UA2 experiments on the pp̄ collider at CERN [33, 34, 35, 36]. The

Feynman diagrams showing charge and neutral current interactions of neutrinos are shown

in Fig. 1.1.

�W+

l−

νl q

q′

�Z0

νl

νl

q

q
Figure 1.1: Feynman diagrams for charged current (left) and neutral current (right) neutrino-
quark interactions.

1.4 Three Neutrino Generations

The first evidence for the existence of more than one neutrino type or ‘flavour’ came in

1962 from an experiment performed by Leon Lederman, Melvin Schwartz, and Jack Stein-

berger at the Brookhaven AGS [37]. The neutrinos for this study were generated in the

first accelerator neutrino beam. Protons were accelerated to 15 GeV and made to strike a

beryllium target. The resulting π± were allowed to decay in a 21 m channel where most of

the neutrinos are produced according to the following reaction:

π+ → µ+ + ν (1.4)

π− → µ− + ν̄. (1.5)

There was a 13.5 m iron absorber at the end of the decay channel followed by a 10 ton

aluminium spark chamber to observe neutrino interactions. The charged particles were

stopped by the absorber and the neutrinos passed to the detector. It was expected that if
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there were only one kind of neutrino, then neutrino interactions would produce muons and

electrons in equal abundance. However only muons were observed in the experiment:

νµ +N → µ− +X (1.6)

νµ +N 9 e− +X, (1.7)

It showed that there were at least two families of neutrinos - one coupling to the electron

and the other to the muon. Lederman, Schwartz, and Steinberg received the Nobel Prize for

this discovery in 1988.

The first evidence that a third generation of leptons, the τ lepton exists came from SLAC

in 1975 [38]. With this discovery the possibility of existence of another type of neutrino,

the τ neutrino also arose. The first indirect evidence for a third type of neutrino came from

the experiments ALEPH, DELPHI, L3 and OPAL on the Large Electron Positron Collider

(LEP) [39]. These experiments were designed to precisely measure the Z boson cross section.

If the total width of the Z resonance is compared to the width from its decays to visible

particles it yields the ‘invisible width’, which is the width from its decays to particles that

cannot be observed in the detector, namely Z0 → νν̄. This makes the Z boson width very

sensitive to the number of neutrino flavours. Fits to the LEP data assuming equal couplings

strengths of the Z to all neutrino types yields the number of neutrino types to be 2.984±0.008.

Fig. 1.2 shows the predictions at different values for the number of neutrino generations.

The first direct evidence for τ neutrinos came from the DONUT collaboration at Fermilab

in 2001 [40]. They created a ντ enriched beam by colliding an 800 GeV proton beam on a

thick tungsten target. The target absorbed most of the pions and hadrons leaving a beam

rich in Ds mesons, which decay to τντ with a branching fraction of 6%. The neutrino beam,

obtained after removing all non-neutrino particles, is passed through a detector composed of

steel and emulsion planes. The charged-current interactions, ντ +N → τ− +X are used to

identify the tau neutrino. The tau decays in the emulsion after a short track, which is seen
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Figure 1.2: Measurement of the hadron production cross section around the Z0 mass reso-
nance at LEP. The curves show the prediction for this cross section with 2, 3, and 4 light
active neutrino species. The results constrain Nν to 2.984±0.008 [39].

as a kink in the track. A total of 9 candidate events were observed in their final dataset,

giving conclusive proof for the existence of tau neutrinos [41].

1.5 Neutrinos in the Standard Model

The SM of particle physics is a locally gauge invariant theory of massless fields. It uses

the gauge group SU(3)× SU(2)× U(1), which combines the colour gauge group SU(3) of the

strong interaction with the SU(2)×U(1) gauge group of Glashow, Weinberg, and Salam’s

electroweak theory [28, 29, 30] (GWS). The SM describes the interactions of 17 fundamental

particles: the 12 spin-1
2

fermions and the 5 spin-0 and spin-1 bosons [42]. The 17 particles

of the SM are shown in Table. 1.1. The fermions are of two kinds: leptons and quarks.

Leptons are the electron, muon and tau particles, along with a neutrino associated with each

family. Leptons are found free in nature while quarks occur in a bound state that make

up hadrons; three-quark states form baryons and quark-antiquark pairs form mesons. They

interact via exchange of vector bosons mediating three forces: the strong, electromagnetic
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Fermions

Name Charge Spin Mass (MeV)

Q
u
ar

k
s

u +2/3 1/2 2.3+0.7
−0.5

c +2/3 1/2 (1.275± 0.025)× 103

t +2/3 1/2 (173.07± 0.52± 0.72)× 103

d −1/3 1/2 4.8+0.5
−0.3

s −1/3 1/2 95± 5

b −1/3 1/2 (4.18± 0.03)× 103

L
ep

to
n
s

e −1 1/2 0.51± 1.3× 10−8

µ −1 1/2 105.65± 3.5× 10−6

τ −1 1/2 1776.82± 0.16

νe 0 1/2 < 2× 10−6

νµ 0 1/2 < 2× 10−6

ντ 0 1/2 < 2× 10−6

Bosons

Name Charge Spin Mass (GeV)

γ 0 1 0

W± ±1 1 80.385± 0.015

Z0 0 1 91.188± 0.002

g 0 1 0

H0 0 0 125± 0.4

Table 1.1: Particles of the SM. The particle masses are as currently measured and are
obtained from [42, 43, 44].

and weak interactions. The strong interactions are responsible for the interaction of the

nucleons and lead to nuclear binding. There are eight vector bosons called gluons which

mediate the strong interaction. The weak interaction is mediated by two charged (W±)

and one neutral (Z0) massive vector boson. It is responsible for radioactive decays. The

electromagnetic interaction couples to all charged quarks and leptons, and is mediated by

the photon. Particle masses in the SM are introduced by the Higgs mechanism of spontaneous

symmetry breaking [45]. Neutrinos are massless in the SM.
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1.6 Neutrino Masses and Mixing

In 1958 Bruno Pontecorvo first came up with the idea of neutrino masses, mixing and

oscillations [46, 47], similar to that seen in the neutral kaon system [48]. At that time only

one type of neutrino was known and his model suggested oscillations between neutrinos and

antineutrinos, assuming non-conservation of lepton number in the neutrino sector. In 1967,

following the discovery of νµ, he considered various models involving νe → νµ oscillations.

The formalism of neutrino mixing as we know it today was given by Ziro Maki, Masaki

Nakagawa and Shoichi Sakata in 1962 [49], discussed below:

The formulism of neutrino oscillations given by Pontecorvo, Maki, Nakagawa, and Sakata

(PMNS) was for two flavour of neutrinos. Here, it is discussed for a general case of any

number of neutrinos. The three-flavour and two-flavour scenarios are discussed later as

special cases of it. The notation used is from [50].

The neutrino flavour eigenstates | να〉 are mixtures of the mass eigenstates | νi〉. The

flavour states are the states that couple to W± and Z0 bosons. Therefore, the weak inter-

action for neutrinos occurs via flavour eigenstates and they propagate in vacuum in mass

eigenstates. A neutrino created at time t = 0 in weak flavour eigenstate | να(0)〉 can be

written as a sum of mass eigenstates:

|να(0)〉 =
∑
i

U∗αi |νi〉 (1.8)

According to the Schrödinger equation the time evolution of the neutrino state is given

by

|να(t)〉 = e−iHt |να(0)〉 (1.9)

where H is the Hamiltonian and | να(0)〉 =| να〉 is the state of the neutrino at time t = 0.

Here |να〉 is not an eigenstate of the Hamiltonian, but the mass basis states are eigenstates

of the Hamiltonian,

H |νi〉 = Ei |νi〉 (1.10)
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with eigenvalues Ei =
√
p2 +m2

i . Therefore, using this relation and the equation 1.8 the

time evolution of the neutrino state can be written as:

|να(t)〉 =
N∑
i=1

e−i EitU∗αi |νi〉 (1.11)

where N is the number of neutrino mass states. Since the neutrino state interact only via

flavour eigenstates, we write | νi〉 in terms of | να〉 by inverting equation 1.8 (using the fact

that U is a unitary matrix):

|να(t)〉 =
∑
β

N∑
i=1

e−i EitUβiU
∗
αi |νβ〉 (1.12)

where β sums over the flavour states.

The probability of observing a neutrino flavour state, |νβ〉, starting from state |να〉 after

time t is given by squaring the amplitude:

Pt(να → νβ) = |〈νβ |να(t)〉|2

=

∣∣∣∣∣
N∑
i=1

e−i EitUβiU
∗
αi

∣∣∣∣∣
2

=
N∑
i=1

N∑
j=1

U∗αiUαjUβiU
∗
βje
−i(Ei−Ej)t (1.13)

Because of their very small mass, neutrinos are highly relativistic and one can make the

approximation: Ei ≈ p +
m2
i

2p
. Natural units (where c = 1) are used to convert the time of

travel to distance, L. Since all neutrinos are produced coherently p is the same for all mass

states i. The probability is then given by:

PL(να → νβ) =
N∑
i=1

N∑
j=1

U∗αiUαjUβiU
∗
βje
−i L

2E
∆m2

ij (1.14)

where ∆m2
ij = m2

i −m2
j and the approximation p = E is made because of the small mass of
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neutrinos. The expression for probability can be more conveniently written as:

PL(να → νβ) = δαβ − 4
∑
i>j

Re (UβiU
∗
βjU

∗
αiUαj) sin2

(
∆m2

ijL

4E

)

+ 2
∑
i>j

Im (UβiU
∗
βjU

∗
αiUαj) sin

(
∆m2

ijL

2E

)
.

(1.15)

where Re and Im denote the real and imaginary parts of the equation. Equation 1.15 gives

the probability that a neutrino generated in flavour eigenstate α will be observed in the

flavour eigenstate β at a distance L from the source, for any number of neutrino states. It is

obvious that oscillations are possible only if neutrinos are massive, and only if at least two

of the mass eigenstates νi have different masses.

Let us examine some symmetry properties of this expression. We see that time reversal,

where α and β are swapped, is equivalent to swapping U and U∗,

PL(να → νβ;U) = PL(νβ → να;U∗), (1.16)

and CPT -invariance requires that

PL(ν̄α → ν̄β) = PL(νβ → να). (1.17)

Combining these two requirements gives:

PL(να → νβ;U) = PL(ν̄α → ν̄β;U∗). (1.18)

Therefore if U is real, in which case U = U∗, the transition probability is CP-invariant and

PL(να → νβ) = PL(ν̄α → ν̄β). Conversely, if it is observed in experiments that PL(να →

νβ) 6= PL(ν̄α → ν̄β), then that would be the evidence of CP-violation.
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1.6.1 Three Flavour Case

The previous discussion of neutrino oscillations is for any number of neutrinos. Since

the SM predicts three neutrinos corresponding to the three families of quarks and charged

leptons, we consider neutrino mixing for the case of three neutrino flavours. Three flavour

mixing can be expressed as:


νe

νµ

ντ

 = U


ν1

ν2

ν3

 , (1.19)

with the PMNS mixing matrix U:

U = U (12)U (13)U (23) (1.20)

=


c12 s12 0

−s12 c12 0

0 0 1




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13




1 0 0

0 c23 s23

0 −s23 c23

 (1.21)

=


c13c12 c13s12 s13e

−iδ

−c23s12 − s23c12s13e
iδ c23c12 − s23s12s13e

iδ c13s23

s23s12 − c23c12s13e
iδ −s23c12 − c23s12s13e

iδ c13s23

 . (1.22)

1.6.2 Two Neutrino Mixing

In order to simplify the mixing matrix Equation 1.22, the mixing can be approximated

as between only two neutrino species. This approximation is reasonable because of the large

mass splitting between two of the neutrino states. In the case of MINOS experiment a beam

of muon neutrinos of energy ≈3 GeV is produced. The beam is allowed to travel a distance

of 735 km before it is made to interact in the detector to measure the number of neutrinos
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remaining. Let us consider transitions between νµ and ντ which are mixtures of neutrino

mass state ν2 and ν3. With only two neutrinos, the mixing can be parameterised by one

angle. Thus, in Equation 1.15, there will be only one term in the sum i > j (i = 3 and

j = 2) and since the matrix U is real, U = U∗ and the imaginary term vanishes, leaving,

PL(νµ → ντ ) = δµτ − 4Uµ3Uµ2Uτ3Uτ2 sin2

(
∆m2

32L

4E

)
. (1.23)

Substituting in the two-flavour mixing matrix,

U =

 cos θ23 sin θ23

− sin θ23 cos θ23

 , (1.24)

the probability becomes,

PL(νµ → νµ) = 1− sin2 2θ23 sin2

(
∆m2

32L

4E

)
(1.25)

PL(νµ → ντ ) = sin2 2θ23 sin2

(
∆m2

32L

4E

)
, (1.26)

Note that PL(νµ → νµ) + PL(νµ → ντ ) = 1, consistent with the conservation of probability.

Since U = U∗ in the two-neutrino scenario, the time-reversal (Equation 1.16) and CP

inversion (Equation 1.18) expressions require:

PL(νµ → ντ ) = PL(ν̄µ → ν̄τ ) = PL(ντ → νµ) = PL(ν̄τ → ν̄µ). (1.27)

Since these symmetry expressions assume only CPT conservation, any violation of them is

evidence that either CPT is not conserved or that the oscillation probability needs to be

different for neutrinos and antineutrinos. The analysis described in Chapter 5 is based on

the two-flavour approximation derived above. A number of models have also tested CPT

invariance. One such model will be discussed in the next chapter and will be used for the
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analysis described in Chapter 6.

1.6.3 Matter Effects

The expressions for neutrino oscillations derived above are true only when the neutrinos

are travelling through vacuum. When travelling through matter it is necessary to take into

account the effect of coherent forward scattering. This effect was first observed by Wolfen-

stein in 1978 [51]. This model was later applied to the solar neutrino oscillation problem by

Mikheyev and Smirnov [52]. This effect is different for electron neutrinos because matter is

composed of electrons. While all neutrino flavours experience the neutral current interaction,

only νe can interact with electrons in the medium via charged-current interactions.

The charged-current scattering in the presence of matter is discussed in the case of two-

neutrino oscillations. In the absence of matter the Schödinger equation for the time evolution

of the neutrino state in the mass basis is

i
d

dt

ν1

ν2

 = Hvac

ν1

ν2

 , (1.28)

where the Hamiltonian for mass eigenstates is easily determined

Hvac =

E1 0

0 E2

 ≈ p+

m2
1/2E 0

0 m2
2/2E

 , (1.29)

where p is the neutrino momentum, E is the neutrino energy, and m1, m2 are the masses of

ν1, ν2. This expression can be multiplied by the matrix U to transform into the weak basis,

νe
νβ

 = U

ν1

ν2

 (1.30)

where one of the weak states has been assumed to be the electron neutrino. Multiplying by
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U † from the left and rearranging, Equation 1.28 becomes

i
d

dt

νe
νβ

 = UHvacU
†

νe
νβ

 . (1.31)

The charged-current scattering of electron neutrinos from electrons in matter adds a

matter potential

V e
m = ±

√
2GFne (1.32)

where GF is the Fermi constant, ne is the density of electrons in the medium. This term is

negative for antineutrinos. Since only electron neutrinos are affected by the matter interac-

tion, the change appears only in the e-e term of the Hamiltonian. The effective Hamiltonian

then becomes

H = UHvacU
† +HCC =

∆m2

2E

sin2 θ + 2E
∆m2V

e
m − sin θ cos θ

− sin θ cos θ cos2 θ

 , (1.33)

where terms proportional to the identity matrix have been removed. The modified Hamil-

tonian is then diagonalised to get

fm =

√
sin2 2θ +

(
cos 2θ − 2E

∆m2
V e
m

)2

(1.34)

Em
1,2 = ±∆m2

4E
fm (1.35)

cos 2θm =
1

fm

(
cos 2θ − ∆m2

2E
V e
m

)
(1.36)

sin 2θm =
1

fm
sin 2θ, (1.37)

where θm is the new mixing angle and Em
1,2 are energy eigenvalues. The final oscillation
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formula then becomes

P (νe → νe) = 1− sin2 2θ

f 2
m

sin2

(
∆m2fmL

4E

)
. (1.38)

The additional fm factors account for the matter effects. The term ∆m2fm has the form

(∆m2 cos 2θ − 2EV e
m)

2
. Thus if matter effects can be observed it is possible to measure the

sign of ∆m2, and hence resolve the mass heirarchy, since the matter effects add or subtract

from ∆m2 directly and not from its absolute value.

1.7 Current Status of Measurements

Neutrino oscillation experiments can measure the following parameters: θ12, ∆m2
21, θ23,

|∆m2
32|, θ13, and a phase δ. The first five parameters have been measured with high precision,

and the sixth is yet to be constrained.

1.7.1 Solar Neutrino Oscillations

Neutrino disappearance was first observed by Ray Davis in 1968 at the Homestake ex-

periment [53]. The experiment was designed to measure the solar neutrino flux in 8B decay.

8B→ 8Be∗ + e+ + νe(≈ 10 MeV), (1.39)

The detector consisted of a tank of C2Cl4 in which Argon atoms were produced due to the

reaction νe + 37Cl→ e− + 37Ar. The flux of 37Ar was measured to be less than half of that

predicted by the Standard Solar Model (SSM) [54]. At first the cause of this discrepancy was

thought to be some problem with the SSM. So the Kamiokande experiment performed the

measurement independently with a Cherenkov detector [55] and verified that the discrepancy

is observed for atmospheric as well as solar neutrinos. These two experiments were sensitive

only to the highest energy solar neutrinos coming from the decay of 8B, but these neutrinos

form only a tiny fraction of the total solar neutrino flux and their rate is model-dependent.
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They observed solar neutrino rates that were 28% ± 5% and 46% ± 8%, respectively, as

compared to that predicted by the SSM shown in Figure 1.3.

Figure 1.3: The solar neutrino spectrum predicted by the SSM [54]. The numbers as-
sociated with the neutrino sources show theoretical errors of the fluxes. (Figure source:
http : //www.sns.ias.edu/ jnb/.

On the other hand, the pp solar chain, where the Hydrogen nuclei become 4He by fusion

p+ p→ d+ e+ + νe(≈ 0.3 MeV), (1.40)

is understood better. These neutrinos can be observed using the reaction

νe + 71Ga→ e− + 71Ge (1.41)

The radiochemical experiments, SAGE in Soviet Union [56] and GALLEX-GNO in Italy

[57], used this reaction to observe solar neutrinos. This reaction has a very low threshold of

0.223 MeV. Therefore, these experiments were sensitive to the pp neutrinos produced in the
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beginning of the main solar fusion reaction. The rate of this recation, unlike that of the 8B

neutrinos, is also mostly model-independent. The rate predicted by the SSM is 128 SNU on

Gallium but Sage and Gallex measured rates of 70.8+6.5
−6.1 SNU and 77.5+7.5

−7.8 SNU respectively

(SNU denotes a Solar Neutrino Unit which is defined as 1036 events/atom/second.), which

is almost half of that predicted by the model. This came to be known as the “solar neutrino

problem”.

However, the results from all these experiments could not constrain any one region of

∆m2
21-θ12 parameter space. The isolation of a single pair of oscillation parameters came from

the Sudbury Neutrino Observatory (SNO) experiment [58]. The SNO experiment is located

about 2 km underground in Vale’s Creighton Mine in Sudbury, Ontario, Canada. It consists

of a water Cherenkov detector designed to detect solar neutrinos with D2O as the detecting

medium. It is capable of measuring the charged and neutral current interaction rates sepa-

rately and, hence, can test the neutrino oscillation hypothesis in a model-independent way.

The results from the experiment isolated the Large Mixing Angle (LMA) solution with MSW

matter effects [59]. The combined fit to all solar neutrino data gave the following values of

oscillation parameters [60]:

∆m2
21 =

(
5.6+1.9
−1.4

)
× 10−5 eV2, tan2 θ12 = 0.427+0.033

−0.029. (1.42)

From the sign of the MSW effect, solar neutrino oscillation measurements established that

m2 > m1 [42].

Another way of measuring neutrino oscillations in the ‘solar sector’ (where the 1-2 oscil-

lations are dominant) is to measure the νe from other sources. One such alternative source

is nuclear reactors, which provide a flux of ν̄e, and the KamLAND is one of the first experi-

ments to measure reactor antineutrinos [61]. KamLAND is situated in the Kamioka mine in

Japan which uses 1 kTon of liquid scintillator surrounded by non-scintillating buffer oil. The

light from the scintillator is captured by approximately 1,900 phototubes. The neutrinos
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1.7. CURRENT STATUS OF MEASUREMENTS

are detected via inverse beta decay and a prompt-delayed double coincidence, as used in

the earliest neutrino experiments, is used as the signal. A total of 55 commercial nuclear

reactors, at a distance ranging from 140 to 210 km from the detector, provide the flux of

ν̄e’s. A significant ν̄e disappearance [61] was observed by the KamLAND, which, when fit

for oscillations, gave

∆m2
21 =

(
7.66+0.22

−0.20

)
× 10−5 eV2, tan2 θ12 = 0.52+0.16

−0.10. (1.43)

Fig. 1.4 shows the ratio of the measured to the expected spectra. These results are con-

sistent with the parameters measured by the solar experiments in Equation 1.42. Fig. 1.5

shows the contours from KamLAND and the combined solar experiments. This measure-

ment greatly increased our confidence in neutrino oscillations since it was performed by two

independent experiments in a completely different setup.

Figure 1.4: Ratio of the measured ν̄e spectrum to the expectation for no-oscillation as a
function of L0/E, where L0 is the distance travelled and E is neutrino energy. Also shown
is the best fit for oscillation hypothesis. Figure from [61].
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Figure 2.7: Prompt event energy spectrum of νe candidate events (top) and allowed re-
gion for neutrino oscillation parameters from KamLAND and solar neutrino experiments
(bottom). All histograms corresponding to reactor spectra and expected backgrounds incor-
porate the energy-dependent selection efficiency shown on the top. For the bottom plot, the
side panels show the ∆χ2-profiles for KamLAND (dashed) and solar experiments (dotted)
individually, as well as their combination (solid). Images obtained from [54].

Figure 1.5: The oscillation parameter regions allowed by the KamLAND experiment (solid
colours) and the combined solar experiments (black lines). The side plots show the two
one-dimensional profiles for KamLAND (dashed), solar (dotted), and combined (solid). The
consistency between the solar and reactor measurements lends significant support to the
oscillation model of neutrino disappearance. Figure from [61].

The results from the solar and KamLAND experiments are combined, and yields the

world’s best measurement, with a precision better than 3.5% [62]:

∆m2
21 =

(
7.54+0.26

−0.22

)
× 10−5 eV2, sin2 θ12 = 0.307+0.018

−0.016. (1.44)

1.7.2 Atmospheric Neutrino Oscillations

The second set of oscillation parameters, ∆m2
23 and sin2(2θ23), can be measured using

atmospheric neutrinos and accelerator based neutrino beams. When cosmic rays strike the

atmosphere they produce pions and kaons. These then decay into neutrinos primarily via:
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1.7. CURRENT STATUS OF MEASUREMENTS

π± → µ+ + νµ;µ+ → e+ + νe + νµ. If there were no oscillations one would expect a flux

ratio for νµ : νe to be 2 : 1. However, the observed νµ flux was 2
3

the prediction [63]. The

best measurement for these parameters comes from the experiments Super-Kamiokande and

MINOS.

The first compelling evidence for neutrino oscillations with νµ from accelerator was pre-

sented by the Super Kamiokande Collaboration in 1998 [2] from the study of atmospheric

neutrinos. The zenith angle distributions of charged-current interactions due to muon neu-

trinos and muon antineutrinos, shown in Figure 1.6, clearly shows a deficit compared to the

distribution if there were no oscillations.

Figure 1.6: Zenith angle distributions for e-like and µ-like events with visible energy <
1.33 GeV (sub-GeV) and > 1.33 GeV (multi-GeV). The dotted histograms show the non-
oscillated Monte Carlo events, and the solid histograms show the best-fit expectations for
νµ → ντ oscillations. Figure from [42].

The atmospheric oscillations were independently confirmed by experiments using muon

neutrinos from accelerator beams. The neutrino sources and detectors in the experiments

were separated by some distance L, and the neutrino beam energy E was tuned such that
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1.7. CURRENT STATUS OF MEASUREMENTS

the location of the detector corresponds to one ’oscillation length’. This is the distance over

which a neutrino with energy E will oscillate back to its original flavour state. The oscillation

length is given by

Latm = 4π
E~c

∆m2c4
≈ 2.5

E

∆m2
m, (1.45)

where E is the neutrino energy in MeV and ∆m2is the neutrino mass-splitting in eV2. The

first confirmation of neutrino oscillations was obtained from the K2K experiment in Japan.

Approximately 1 GeV muon neutrinos were produced at the KEK accelerator, and were

observed in the Super-Kamiokande detector 250 km away (For E = 1 GeV, Latm ≈ 1, 000 km

with the ∆m2measured by Super-Kamiokande). The results were found to be consistent with

those obtained from Super-Kamiokande.

The MINOS experiment, which gives the most precise accelerator measurement to date,

uses neutrinos with E ≈ 3 GeV and a baseline of 735 km. The experiment is described

in detail in the rest of the thesis. By observing the disappearance of muon neutrinos and

antineutrinos MINOS has produced the most precise measurement of the atmospheric mass

splitting. The best measurement of the mixing angle θ23 is obtained by Super-Kamiokande.

The confidence limits on the parameters ∆m2 and sin2 2θ are shown in Fig. 1.7. The best

fit to ∆m2 from MINOS [64] and sin2 2θ from Super-K [65] are:

∆m2
32 = 2.41+0.09

−0.10 × 10−3 eV2 sin2(2θ23) = 0.95+0.035
−0.036 (90% C.L.) (1.46)

1.7.3 Reactor Neutrino Oscillations

The mixing angle, θ13, drives the disappearance of electron (anti)neutrinos at the atmo-

spheric oscillation length (Equation 1.45) with the survival probability:

P (ν̄e → ν̄e) = 1− sin2 2θ13 sin2

(
1.27∆m2

atm

L

E

)
, (1.47)
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Figure 1.7: Confidence limits on the parameters |∆m2| and sin22θ, assuming equal oscilla-
tions for neutrinos and antineutrinos. The black curve gives the 90% contour obtained from
the combined analysis of MINOS accelerator and atmospheric neutrinos. For comparison,
the blue curves show the 90% contours from Super-K (zenith angle analysis indicated by
dotted line, L/E analysis indicated by solid line) [64]; and the green curve shows the 90%
contour from T2K [66].

where L is in metres and E in MeV. The CHOOZ experiment in France searched for the

disappearance of reactor electron antineutrinos (E ≈ 3.6 MeV). The electron antineutrinos

came from two reactors, with a thermal power of 4.25 GW, at the CHOOZ nuclear power

plant. The detector, situated 1 km from the reactors, contained 5 tons of liquid scintillator

target doped with Gd (to enhance neutron capture) and the experiment searched for inverse

beta-decay. No electron neutrino disappearance was observed, and hence only an upper

limit could be set on the value of the last mixing angle. The ν̄e ↔ νµ oscillations were

excluded at 90% C.L. for ∆m2 > 7 × 10−4eV2 at maximal mixing, and sin2 2θ > 0.10 for

large ∆m2 [67]. Another experiment, complementary to CHOOZ in detector design was

the neutrino experiment at Palo Verde in Arizona. The source of ν̄e in this case were three
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nuclear reactors: two at a distance of 890 m from the detector and one at 750 m, with a

total thermal output of 11.63 GW. The detector consisted of 11.2 tons of Gd-loaded liquid

scintillator. Again, no evidence for disappearance of electron antineutrinos was found and

the mode νe ↔ νx was excluded at 90% C.L. for ∆m2 > 1.1 × 10−3eV2 at full mixing, and

sin2 2θ > 0.17 at large ∆m2 [68].

Another way to measure the angle θ13 is by looking for νe appearance in a νµ beam with

experiments such as MINOS [69] and T2K [70]. Both these experiments measured θ13 to be

greater than zero and global fits to all available data gave > 3σ evidence for nonzero θ13, with

the central values in the range 0.05 < sin2 2θ13 < 0.10 [71, 72]. The Double Chooz experiment

was the successor to the CHOOZ experiment, consisting of two identical detectors, one at

400 m and the other at 1.05 km distance from the CHOOZ nuclear cores. It was designed to

be sensitive to the above mentioned range of θ13. The experiment observed 8249 candidate

electron antineutrino events with 33.71 GW-ton-years exposure using the detector located at

10.5 km. The expectation in the case of θ13 = 0 was 8937 events. From a rate and spectral

shape analysis it was found that sin2 2θ13 = 0.109± 0.030(stat)±0.025(syst) [73].

A very precise measurement of the mixing angle was later made by the reactor experiment

Daya Bay in China. The Daya Bay nuclear power complex consists of 6 reactors, each with

a maximum of 2.9 GW thermal power (GWth), producing a high flux of ≈3 GeV electron

antineutrinos. There are two near detectors and one far detector situated at approximately

470 m, 576 m and 1648 m, respectively, from the nuclear reactors. The electron antineutrinos

are detected via inverse β-decay in gadolinium doped liquid scintillator. They looked for the

coincidence of the prompt scintillation from the e+ and the delayed neutrons captured on

Gd. The mixing angle θ13 was obtained by comparing the observed and expected rates at

the far detector and the difference in the spectral shape. The best fit to their data gave [74]

sin2 θ13 = 0.089+0.010
−0.005 (1.48)
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Fig. 1.8 shows the measured prompt energy spectrum of the far hall compared with the no-

oscillation prediction based on the spectrum at the two near halls in Daya Bay experiment.

This measurement was confirmed by the Reactor Experiment for Neutrino Oscillations

(RENO) experiment. The RENO experiment is located in Korea and obtains antineutrinos

from six 2.8 GWth reactors at the Yonggwang Nuclear Power Plant. The antineutrinos are

detected by two identical detectors located at 294 and 1383 m, respectively, from the reactor

array centre. By comparing the observed and expected rates at the far detector the value

of sin2 2θ13 was determined to be 0.113±0.013(stat)±0.019(syst) [75]. The observed and

expected spectra at the far detector along with the ratios of the measured spectra and the

no-oscillation prediction are shown in Fig. 1.9.

Figure 1.8: Top: Measured prompt energy spectrum of the far hall compared with no-
oscillation prediction based on the measurements of the two near halls. Bottom: The ratio
of measured and predicted no-oscillation spectra. The solid curve shows the expected ratio
with oscillations, assuming sin2 2θ13 = 0.089. The dashed line is the no-oscillation prediction.
Figure from [74].
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Figure 1.9: Top: Measured prompt energy spectrum of the far detector compared with no-
oscillation prediction based on the measurements of the near detector. The backgrounds
shown in the inset are subtracted from the far detector spectrum. Bottom: The ratio of
measured spectrum at the far detector and the no-oscillation prediction. Figure from [75].

The recent updated results from the T2K experiment improve their measurement of the

mixing angle. The T2K experiment is a long baseline experiment optimised to observe

electron neutrino appearance in a muon neutrino beam. The near detector is at a distance

of 280 m and the far detector at 295 km from the neutrino production target. A total of 11

νe candidate events were observed at the far detector when 3.3±0.4(syst) background events

were expected. The background-only hypothesis was rejected with a p value of 0.0009, which

is equivalent to a 3.1σ significance. A fit was performed to the far detector events assuming

δCP = 0 and sin2(2θ23) = 1.0. The best-fit values of sin2(2θ13) with the 68% confidence levels

are [76]
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Figure 1.10: The 68% and 90% confidence intervals for sin2(2θ13) scanned over values of δCP .
The left plot assumes normal hierarchy and the right plot is for inverted hierarchy. Figure
from [76].

sin2(2θ13) = 0.088+0.049
−0.039 (normal hierarchy), (1.49)

sin2(2θ13) = 0.108+0.059
−0.046 (inverted hierarchy).

The allowed confidence intervals are shown in Fig. 1.10.

The above discussion was based on the SM of particle physics and the phenomenon of

neutrino oscillations was used to analyse the data from various experiments. It would also be

interesting to study whether the existing data can be described by some physical phenomena

other than neutrino oscillations. One such model that is formed by adding Lorentz and CPT

violating terms to the SM is described in Chapter 2.
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Chapter 2

Lorentz and CPT Violation in the

Neutrino Sector

2.1 Standard Model Extension

The modified SM of particle physics formed by adding neutrino masses to the SM, also

called the neutrino SM (νSM) [77], has been successful in explaining most of the neutrino

oscillation experimental results to date. A large number of experiments have searched for

neutrino oscillations and made a precise measurement of oscillation parameters, discussed in

Chapter 1. But there is a possibility that there might be new physics beyond the SM. One of

the possibilities for new physics is Lorentz violation. The Lorentz symmetry is fundamental

to the SM physics and states that the experiments give the same results regardless of their

inertial reference frame and regardless of their orientation. A closely related hypothesis is

that of CPT symmetry. According to this symmetry the outcome of an experiment is the

same if we replace it with its CPT image, by replacing each charge with its conjugate, by

reversing the parity of the system, and by reversing time. These two symmetries have been

tested by various experiments and no evidence of Lorentz and CPT violation has been found

so far. But the anomalous results of some experiments [78, 79, 80, 81] have provided hints

of possible symmetry breaking. The discovery of Lorentz or CPT violation would give a
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definite proof of new physics beyond the SM, and would necessitate fundamental changes

in the theories of gravity and quantum mechanics. Since violation of these symmetries has

never been seen, they are likely to be very small. A challenge of detecting them is to attain

sufficient sensitivity to signals of their violation.

The Standard-Model Extension (SME), developed over a period of more than 20 years, is

a theoretical framework which provides a quantitative description of Lorentz and CPT vio-

lation. It was first published in its basic form in the 1990s [82, 83]. It contains both General

Relativity and the SM, and so it is a realistic theory that can be applied to analyse observa-

tional and experimental data. It is a realistic effective field theory in which the coefficients for

Lorentz violation could arise from spontaneous symmetry breaking in a fundamental theory

such as string theory [84, 85]. It exploits the fact that the effects of such symmetry viola-

tions can be detected at attainable energies in the context of effective field theory [86, 87].

The SME framework is constructed as a general framework to analyse the data to search

for possible Lorentz violation. In the SME, Lorentz violating interactions are described by

the perturbative terms in the Lagrangian, on top of the SM terms, controlled by a set of

coefficients whose values are to be determined or constrained by experiments. We are partic-

ularly interested in the test of Lorentz violation using neutrino oscillations. Since neutrino

oscillation is a natural interferometer, small couplings of neutrinos with Lorentz violating

fields could cause phase shifts and could result in neutrino oscillations. The sensitivity of

neutrino oscillations to Lorentz violation is comparable with precise optical experiments. To

analyse the neutrino data the neutrino sector SME [88] has been used in this thesis. Various

experiments have investigated their results in the context of SME framework by restricting

to a small number of coefficients. The constraints on a large number of SME coefficients

have been obtained by different experiments and are compiled in [89]. But the sensitivity to

all the coefficients has not been identified yet. The analysis presented in this thesis aims to

measure a subset of four time-independent SME coefficients.
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2.2 The Model used in this Thesis

The MINOS experiment is suitable for testing Lorentz and CPT violation through evi-

dence of oscillations that deviate from the standard L/E dependence, or that show sidereal

time-dependent oscillations as a consequence of a preferred direction in the universe. Previ-

ous MINOS analyses have obtained limits on a large number of SME coefficients by looking

for sidereal variations [90, 91, 92, 93]. The model used in this analysis considers a differ-

ent subset of SME coefficients [94] constructed using the basic formalism from [88]. Since

MINOS is most sensitive to oscillations in the atmospheric sector, we consider oscillations

between neutrino generations νµ and ντ instead of those between νe and νµ described in

the reference [94]. A two-flavour approximation is considered for simplicity. Because of the

presence of Lorentz violation, it is necessary to specify the frame in which experimental

results are reported. The measurements are conventionally expressed in terms of coefficients

for Lorentz violation defined in a Sun-centered celestial equatorial frame with coordinates

(T, X, Y, Z), where Z lies along the Earth’s rotational axis. This makes it easy to com-

pare the results obtained from different experiments. The oscillations depend on the SME

coefficients (cL)TTµµ (≡ (cL)ZZµµ ), (cL)TTττ (≡ (cL)ZZττ ), g̃ZTµµ and g̃ZTττ . Here the g̃-type coefficients

are Lorentz as well as CPT violating and the c-type coefficients are Lorentz-violating but

CPT-conserving. These coefficients have not been constrained by any experiments to date.

It has been shown by Kostelecky and Mewes [88] that a minimal extension of SM physics

including all possible CPT and Lorentz symmetry-violating Dirac and Majorana-type cou-

pling to left and right-handed neutrinos gives rise to an effective Hamiltonian heff describing

neutrino-antineutrino oscillations. In the case of two flavours the Lorentz-violating equations

of motion can be written in analogy to the Dirac equation

(iΓνAB∂ν −MAB) νB = 0 (2.1)

where A, B = µ, τ , µ and τ are flavour indices for neutrinos and antineutrinos, respectively.
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The coefficients ΓνAB and MAB can be expanded in terms of the γ matrices determining the

Dirac algebra:

ΓνAB = γνδAB + cµνABγµ + dµνABγ5γµ + eνAB + if νABγ5 + 1
2
gλµνAB σλµ, (2.2)

MAB = mAB + im5ABγ5 + aµABγµ + bµABγ5γµ + 1
2
Hµν
ABσµν (2.3)

The masses m and m5 are CPT and Lorentz-conserving and equivalent to the standard

Majorana and Dirac type masses. The coefficients with even number of indices: c, d and H

are CPT-conserving but Lorentz-violating; and those with odd number of indices: a, b, e, f

and g are both CPT and Lorentz-violating. The propagation of the states νµ, ντ , νµ, and ντ

is governed by the Schrodinger equation

i
d

dt



νµ

ντ

νµ

ντ


= (heff )



νµ

ντ

νµ

ντ


(2.4)

For definiteness g̃ZT is assumed to be the only non-zero g̃-type coefficient, where g̃ is

defined via

g̃νσ ≡ g0νσ +
i

2
ε0νγρg

γρσ (2.5)

Then bµ and bτ coefficients are introduced as:

bµ ≡ 2 sin Θgµ,

bτ ≡ 2 sin Θgτ . (2.6)
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It is further assumed that (cL)TTab and (cL)ZZab are the only nonzero cL-type coefficients. The

coefficients (cL)TTab and (cL)ZZab are, in fact, equal to one another. The superscript TT and

subscript L for the cL type coefficients will henceforth be omitted, and cµµ and cττ coefficients

are introduced so that we can write:

cµµ = 2(cL)TTµµ [1 + cos2 Θ],

cττ = 2(cL)TTττ [1 + cos2 Θ]. (2.7)

Here Θ is the celestial colatitude and here it is the angle made by the neutrino beamline

with the Z-axis. All cab’s are assumed to be real. Moreover all contributions from aL and

H-type coefficients are neglected. The effective Hamiltonian now reads:

heff = diag

(
E +

Σm2

4E

)
(2.8)

+



−∆m2

4E
cos 2θ − cµµE

2
∆m2

4E
sin 2θ bµE

2
0

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ − cττE

2
0 bτE

2

bµE

2
0 −∆m2

4E
cos 2θ − cµµE

2
∆m2

4E
sin 2θ

0 bτE
2

∆m2

4E
sin 2θ ∆m2

4E
cos 2θ − cττE

2



This matrix is symmetric and the eigenvalues of the given Hamiltonian can be interpreted

as the effective energy eigenvalues of the system. The effective Hamiltonian Eq. 2.8 is a 4 ×

4 matrix, which consists of four 2 × 2 block matrices. The CPT-violating b-type coefficients

generate neutrino-antineutrino mixing, while the CPT-conserving c-type coefficients yield

Lorentz-violating terms altering the dispersion relations of the flavour states. In the limit
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where the CPT and Lorentz-violating coefficients are set to zero the Hamiltonian which

describes the standard neutrino oscillations is retained. It is possible to block-diagonalise

the effective Hamiltonian heff in terms of a block diagonal effective Hamiltonian h̃eff via

heff = Uh̃effU
† (2.9)

This expression is plugged back into Eq. 2.4 and the basis is changed to



νµ

ντ

νµ

ντ


→ 1√

2



νµ − νµ

ντ − ντ

νµ + νµ

ντ + ντ


. (2.10)

ν− and ν+ are defined as,

ν− =

ν−µ
ν−τ

 ≡ 1√
2

νµ − νµ
ντ − ντ .

 , (2.11)

ν+ =

ν+
µ

ν+
τ

 ≡ 1√
2

νµ + νµ

ντ + ντ

 (2.12)

and the charge conjugation operator C in flavour space is introduced which acts on the

different flavour states such that ν− is odd and ν+ is even under charge-conjugation. Given

these prerequisites the Schrodinger equation for the effective Hamiltonian can be rewritten

in a 2 × 2 block matrix form:

i
d

dt

ν−
ν+

 =

hC-odd 0

0 hC-even


ν−
ν+

 (2.13)

Since Eq. 2.13 is block diagonal the C -odd and C -even states decouple and, therefore,
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neutrino-antineutrino oscillations are possible only between the C -odd and C -even states

separately.

2.3 Directional Dependence

As mentioned earlier the frame of reference used is the Sun-centered celestial equatorial

frame with coordinates (T, X, Y, Z), illustrated in Fig. 2.1. In this frame the Z direction is

identified as lying along the Earth’s rotational axis and the X direction as pointing towards

the vernal equinox. The coefficients for Lorentz violation in any other inertial frame can be

related to the standard set in the Sun-centered frame by an observer Lorentz transformation.

The local co-ordinates of the experiment are specified in Earth-centered co-ordinates (x, y,

z). Finally, local polar co-ordinates (θ, φ) are used to specify the direction of the beam.

Figure 2.1: Co-ordinate system used for this analysis: a) the Sun-centered system, b) the
Earth-centered system, c) the local polar coordinate system, d) the time zero is defined as
the location of the experimental site at midnight near autumnal equinox. Figure from [95].
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A standard parametrisation for the direction of neutrino propagation is

p̂ = (sin Θ cos Φ, sin Θ sin Φ, cos Θ) ,

ε̂1 = (cos Θ cos Φ, cos Θ sin Φ,− sin Θ) ,

ε̂2 = (− sin Φ, cos Φ, 0) ,

(2.14)

where Θ and Φ are the celestial colatitude and longitude, respectively, and p̂ is the unit

3-vector of the particle’s momentum. Therefore in this parametrisation Θ is the angle made

by the neutrino beam with the Earth’s rotational axis (Z-axis). It can be seen from Eq. 2.6

that bµ and bτ depend on sin Θ, and can be zero for Θ = 0 or π. This means that for

certain orientations of the NuMI beam there would be no observable neutrino-antineutrino

mixing even if the b-type parameters are non-zero. But since the NuMI beamline is fixed

on Earth the value of Θ stays constant and the oscillations are time independent. A co-

ordinate transformation is performed between Sun-centered co-ordinates and Earth-centered

co-ordinates [96] to find Θ:

cos Θ = − sinχ sin θ cosφ+ cosχ cos θ (2.15)

where χ is the colatitude of the beamline. For the NuMI beamline χ = 90◦ - latitude =

42.17973347◦, the beam zenith angle θ = 93.2745◦ defined from the z-axis which points up

towards the local zenith, and the beam azimuthal angle φ = 203.909◦ measured counter-

clockwise from the x-axis chosen to lie along the detector’s long axis. Substituting these

values in Eq. 2.15 we calculate Θ = 55.214◦ and therefore, sin Θ = 0.8. Thus the value of

bµ and bτ is enhanced by a constant factor of 1.6, and that of cµµ and cττ is enhanced by a

factor 2.6. Thus, we can write

bα = 1.6g̃ZTαα , and cαα = 2.6(cL)TTαα , (2.16)
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2.3. DIRECTIONAL DEPENDENCE

where α is µ or τ .

2.3.1 Effective Mixing Angle

The oscillation between C -odd and C -even states is considered separately. The effective

mixing angle for the C -odd states can be written in terms of the standard 2-flavour mixing

angle θ and ∆m2 as

tan 2θC-odd =
∆m2 sin 2θ

((bµ − bτ + cµµ − cττ )E2 + ∆m2 cos 2θ)
, (2.17)

and that between the C -even states as

tan 2θC-even =
∆m2 sin 2θ

((−bµ + bτ + cµµ − cττ )E2 + ∆m2 cos 2θ)
(2.18)

2.3.2 Conditions for Resonance

The conditions to be satisfied for resonant mixing are

bµ − bτ > |cµµ − cττ | ⇒ only C -even resonance, (2.19)

bµ − bτ < −|cµµ − cττ | ⇒ only C -odd resonance, (2.20)

If sgn( cµµ − cττ )= -1, then for

−|cµµ − cττ | < bµ − bτ < |cµµ − cττ | ⇒ both resonances exist (2.21)

whereas if sgn( cµµ − cττ ) = +1, then for

−|cµµ − cττ | < bµ − bτ < |cµµ − cττ | ⇒ neither of the resonances exists. (2.22)
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2.4. OSCILLATION PROBABILITY

It is seen that the oscillation probability νµ to νµ is maximum when either C-odd or C-even

resonance exists. For the case when both C-even and C-odd states exist this probability is

much smaller, and is zero when none of the resonance states exists. This will be explained

in detail in Section 2.4.

2.4 Oscillation Probability

The oscillation probabilities are calculated using the matrix V([94]) which diagonalises

the effective Hamiltonian and translates the flavour eigenstates νµ, ντ , νµ, and ντ into the

mass eigenbasis ν1, ν2, ν3, and ν4. The matrix V is written as:

V =
1√
2



cos θC-odd sin θC-odd cos θC-even sin θC-even

− sin θC-odd cos θC-odd − sin θC-even cos θC-even

− cos θC-odd − sin θC-odd cos θC-even sin θC-even

sin θC-odd − cos θC-odd − sin θC-even cos θC-even


(2.23)

and the effective hamiltonian hdiageff is obtained via,

hdiageff = V †heffV. (2.24)

The oscillation probability is obtained by squaring the amplitude of oscillation,

P (β → α) = |
∑
i

Vβie
−iEit(V †iα)|2, (2.25)

where Ei are the effective energy eigenvalues of the associated Hamiltonian heff ; α and β

stand for the four neutrino species involved: νµ, ντ , νµ, ντ . Considering ∆m2 to be the

mass-squared difference between the mass eigenstates ν1 and ν2, or ν3 and ν4, the various

oscillation probabilities are given by:
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2.4. OSCILLATION PROBABILITY

Survival probability of νµ:

P (νµ → νµ) = 1−
(

sin2(θodd − θeven) +
1

4
[sin(2θodd) + sin(2θeven)]2

)
sin2

(
∆m2L

4E

)
(2.26)

Oscillation probability νµ to νµ:

P (νµ → νµ) =

(
sin2(θodd − θeven)− 1

4
[sin(2θodd)− sin(2θeven)]2

)
sin2

(
∆m2L

4E

)
(2.27)

Oscillation probability νµ to ντ :

P (νµ → ντ ) =

(
1

4
[sin(2θodd) + sin(2θeven)]2

)
sin2

(
∆m2L

4E

)
(2.28)

Oscillation probability νµ to ντ :

P (νµ → ντ ) =

(
1

4
[sin(2θodd)− sin(2θeven)]2

)
sin2

(
∆m2L

4E

)
(2.29)

If the Lorentz and CPT-violating parameters are zero, the expressions for the oscillation

probabilities Eq. 2.26 and 2.28, respectively, reduce to the standard oscillation probabilities:

P (νµ → νµ) = 1− sin2 2θ sin2

(
∆m2 L

4E

)
, and (2.30)

P (νµ → ντ ) = sin2 2θ sin2

(
∆m2 L

4E

)
(2.31)
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2.4. OSCILLATION PROBABILITY

Furthermore, the neutrino to antineutrino oscillation probabilities Eq. 2.27 and 2.29 become

zero if the Lorentz and CPT-violating parameters are zero.

From the resonance conditions mentioned in Section 2.3.2 it is clear that there is an

ambiguity in the model because of which one cannot distinguish between the cases when

the parameters are actually small and when they are large but don’t satisfy the resonance

condition. Therefore to discuss some of the features of this model it is assumed that the

coefficients (cL)TTµµ and (cL)TTττ are zero, and because of degeneracy between the parameters

g̃ZTµµ and g̃ZTττ any one of these two parameters is considered (these are relabelled g̃ZTαα , where

α can be µ or τ), assuming the other one to be zero. Then the condition for either the C-odd

or C-even resonance will always be satisfied for any non-zero value of g̃ZTαα . It can be seen

from Eq. 2.17 and 2.18 that there is a threshold in energy above which the Lorentz and CPT

violating parameters dominate. This threshold is roughly given by E ∼
√

∆m2/1.6|g̃ZTαα |

GeV. Fig. 2.2 shows the variation of effective mixing angles θC-odd and θC-even plotted against

E. The angle θC-odd and θC-even approaches 0 and π/2, respectively, for E�
√

∆m2/1.6|g̃ZTαα |

GeV. Therefore above this threshold the oscillations approach maximal mixing and do not

depend on the value of θ23. Assuming g̃ZTττ =0, for g̃ZTµµ > 0 the resonance condition for the

existence of only the C-even states is satisfied and g̃ZTµµ < 0 satisfies the resonance condition

for C-odd states. On the other hand, assuming g̃ZTµµ =0, the conditions for C-odd and C-even

resonances will be reversed; the oscillation probabilities would be unaffected.

The same energy threshold changes the oscillation mode from νµ → ντ to νµ → νµ. For

small g̃ZTαα the threshold is at higher energies where no oscillations occur. As g̃ZTαα increases

the threshold moves to lower energies and νµ → νµ appearance is seen instead of νµ → ντ

disappearance [98]. However g̃ZTαα doesn’t change the oscillation frequency.

Fig. 2.3 and Fig. 2.4, respectively, show the oscillation probabilities νµ → νµ and νµ →

ντ for the value of ∆m2 = 2.32 × 10−3eV 2, sin2 2θ=0.97, g̃ZTαα = 2 ×10−22. Fig. 2.3 shows

a finite probability of νµ → νµ as well as νµ → ντ oscillations at ∼2 GeV while Fig. 2.4

compares the νµ → νµ survival and νµ → ντ oscillation probabilities using the SME model
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Figure 2.2: The plot shows the effective mixing angle, θC-odd or θC-even as a function of
neutrino energy E. We have chosen ∆m2 = 2.32 × 10−3eV 2, sin2 2θ=0.97 (values taken
from [97]), and four different values of g̃ZTµµ . g̃ZTµµ . (cL)TTµµ , and (cL)TTττ are assumed to be zero.

The dotted vertical line denoting the energy threshold is drawn at E =
√

∆m2/1.6|g̃ZTµµ |
GeV. We can see the threshold decreases as the value of g̃ZTµµ is increased.
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Figure 2.3: Oscillation probabilities for νµ → νµ and νµ → ντ . (g̃ZTαα =2 ×10−22, ∆m2 =
2.32× 10−3 eV2, sin2 2θ = 0.97)
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Figure 2.4: Probabilities for νµ → νµ survival and νµ → ντ oscillation as a function of
neutrino energy. The red line shows the oscillation probabilities using the new model with
g̃ZTαα = 2 × 10−22 and the black line shows the oscillation probabilities using the standard
two-flavour oscillations model (∆m2 = 2.32× 10−3 eV2 and sin2 2θ = 0.97 in both cases).

and the standard two-flavour oscillation model.

2.5 Summary

From equation 2.3 it can be seen that (bµ − bτ ) = 1.6 × (g̃ZTµµ − g̃ZTττ ), and (cµµ − cττ ) =

2.6 × ((cL)TTµµ − (cL)TTττ ). Since g̃ZTµµ and g̃ZTττ are degenerate, we are only sensitive to the

difference (g̃ZTµµ − g̃ZTττ ); and by the same reasoning to ((cL)TTµµ − (cL)TTττ ). So we attempt to

constrain this combination of parameters by performing a fit to MINOS data. Since the sign

of the g-type parameters does not affect the oscillation probabilities we can constrain only
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2.5. SUMMARY

the magnitude of these parameters. Non-zero values of g̃-type coefficients lead to mixing

between neutrinos and antineutrinos, therefore the SME parameters (g̃ZTµµ − g̃ZTττ ) can be

obtained by searching for an excess of antineutrino events at the Far Detector as compared

to the number of events expected from the standard two-flavour oscillations. In addition,

((cL)TTµµ − (cL)TTττ ) also lead to a change in the oscillations in the standard νµ − ντ sector.

Oscillations in the presence of the SME coefficients in the present model are time independent

and the energy at which νµ to νµ oscillations occur depends on the size of the parameters.

Furthermore, the constraint on individual SME parameters can also be obtained by setting

all other parameters to zero, and fitting for only that parameter. This analysis will help to

increase our knowledge of Lorentz and CPT violation in the neutrino sector.
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Chapter 3

The MINOS Beam and Detectors

The Main Injector Neutrino Oscillation Search (MINOS) is a long-baseline neutrino-oscillation

experiment. It is made up of the NuMI (Neutrinos at the Main Injector) high intensity neu-

trino beam and two detectors. The NuMI beam is located at Fermilab, where 120 GeV

protons from the Main Injector are directed at a 940 mm long segmented graphite target

to produce mesons. The mesons then decay via weak interactions to produce the neutrino

or antineutrino beam. MINOS measures neutrino energy spectrum at the Near Detector

(ND) at Fermilab and again 735 km downstream with a Far Detector (FD) in the Soudan

Mine in northern Minnesota. Fig. 3.1 gives a view of the location of the MINOS detectors.

Comparison of the neutrino energy spectra at the two detectors allows the measurement of

neutrino oscillation parameters.

The two-detector design makes the measurement less dependent on simulations and allows

the systematic uncertainties which affect both detectors in the same way to effectively cancel

out.

3.1 The NuMI Beam

The Neutrinos at the Main Injector (NuMI) facility at Fermilab produces a neutrino

beam using protons from the Main Injector (MI). Protons of 120 GeV are extracted from
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3.1. THE NUMI BEAM

Figure 3.1: The layout of the MINOS Experiment showing the location of the Near and Far
Detectors, and the distance between them.

the MI accelerator in a series of pulses, also called spills. Each of these spills contains six

batches. Before the Tevatron shutdown on September 30, 2011 NuMI received five or six

batches with the remaining one going to produce antiprotons for the Tevatron. After the

Tevatron shutdown all six spills are received by NuMI. A spill of protons arrives on average

every 2.2 seconds and lasts for 8 - 10 µs. At the beginning of the experiment in 2005, each

spill consisted of approximately 2.2 × 1013 protons on target (POT) with a linear increase

to 3.6× 1013 POT at the end of data taking on April 30, 2012. The average beam power is

approximately 340 kW. The NuMI beamline is illustrated in Fig. 3.2 and more details can

be found in [99, 100] and [101]. The proton beam is aimed 58 mrad downwards into the

Earth using quadrupoles and bending magnets to point at the FD, which is situated in the

Soudan Mine. The global positioning system (GPS) defines the beam direction to within

12 m of the FD.

The beam is allowed to strike a rectangular graphite target. The target consists of 47

segments which are 6.4 mm in width, 15 mm in height and 20 mm in length. There is a
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0.3 mm spacing between each segment. This gives the target a total length of 954 mm which

corresponds to 1.9 interaction lengths. The beam size at the target is 1.2-1.5 mm. The

target shape and dimensions are designed to obtain a high flux of mesons while minimising

the number of mesons re-interacting in the target. The target is water cooled by stainless

steel tubes at the top and bottom of each segment.

The interaction of protons with the graphite target produces a variety of daughter par-

ticles including charged mesons (pions and kaons).

p+ C → π±, K± +X (3.1)

Figure 3.2: Components of the NuMI beamline. Protons of 120 GeV from FNAL Main
Injector enter from the left. Figure from [101].

These particles are focused by two magnetic horns that produce a toroidal magnetic field

about an axis along the beam direction. These horns are magnetised in such a way as to

focus positively charged mesons which will produce muon neutrinos :

π+(−) → µ+(−) + νµ(νµ), (3.2)

K+(−) → µ+(−) + νµ(νµ). (3.3)

The focused beam of particles enters a 675 m long and 2 meters in diameter steel pipe
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3.1. THE NUMI BEAM

where the mesons decay into a muon and a muon neutrino. The length of the decay pipe

is approximately the decay length of a 10 GeV pion. The entrance to the decay pipe is

sealed by a two-piece aluminium-steel window. The central (radius < 50 cm) portion of the

window is made of 1 mm thick aluminium and is strengthened by an outer (radius > 50 cm)

section made of 1.8 cm thick steel. For the first two runs of the experiment the decay pipe

was evacuated down to about 1 Torr. After that (December 2007) the decay pipe was filled

with Helium gas at 0.9 atm. This was done because the strength of the upstream end of the

decay pipe had been reduced by the acidic conditions created by the beam, raising concerns

of implosion.

The beam goes through a hadron absorber following the decay pipe where leftover mesons

and protons get absorbed. The muons range out to 240 m of rock after the absorber where

they, too, get stopped. There is one hadron monitor directly upstream of the hadron absorber

and three muon monitors, placed in the rock that follows the absorber, alternating with layers

of rock. The beam then reaches the ND. In this forward horn current (FHC) focusing mode

the beam at the ND is composed of 91.7% νµ, 7.0% νµ and 1.3% (νe + νe).

Antineutrinos are produced by the decay of pions and kaons produced when primary

protons collide with the graphite target.

p+ C → π− → µ− + νµ (3.4)

The antineutrinos in the FHC beam come primarily from low-pT pions which do not get

defocused by the magnetic horns and travel down the axis of the beamline. These pions

are called “neck-to-neck” since they pass directly through the necks of both horns. Fig. 3.3

shows the comparison of the neutrino and antineutrino parents’ pT - pZ distributions. Since

the “neck-to-neck” parents do not have the advantage of momentum selection by the horns

the antineutrinos from these parents have a broader spectrum with a higher peak energy

than the neutrinos. So the peak energy of antineutrinos is around 8 GeV instead of 3 GeV
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for neutrinos. The ND spectra of muon neutrinos and antineutrinos in FHC-mode are shown

in Fig. 3.4.
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Figure 3.3: The pT vs. pZ distribution of the π± parents that produce neutrinos (left) and
antineutrinos (right) at the ND when the beam is in low-energy FHC mode.

Figure 3.4: Near detector spectra of muon neutrinos and antineutrinos in FHC-mode.

In order to make an antineutrino beam, the polarity of the horn current is reversed to

focus negatively charged mesons which decay into antineutrinos. The composition of the

reversed horn current (RHC) beam integrated over all energies is 39.9% νµ, 58.1% νµ and

2.0% (νe + νe). The spectra in this mode are shown in Fig. 3.5.

47



3.2. THE MINOS DETECTORS

Reversing the horn polarity changes the spectra of signal and background because of the

combination of two effects; first, the beam is produced by protons which results in a larger

flux of positively charged mesons and second, the interaction cross section of antineutrinos

is about half that of neutrinos [102, 103]. This results in a smaller flux compared to the

neutrino-mode.

Figure 3.5: Near detector spectra of muon neutrinos and antineutrinos in RHC-mode.

The NuMI beamline can be operated in multiple configurations. The peak energy of the

neutrino beam can be adjusted by varying the target position relative to the horns. Fig. 3.6

shows the three configurations that result in low, medium and high energy beams. (All of

the data used for physics analysis in this thesis was collected in the “LE-10” configuration

where the separation between the horns is 10 m and the horn current is 185 kA.)

3.2 The MINOS Detectors

The two MINOS detectors are designed to be as functionally equivalent as possible to

minimise the effect of a range of systematic uncertainties. Both the detectors are magne-

tised steel and scintillator tracking calorimeters with alternating views of scintillator. The

detectors are shown in Fig. 3.7 and a schematic of the steel and scintillator planes is shown
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Figure 3.6: Three possible configurations of the NuMI beam (low, medium and high energy:
LE, ME and HE). The relative target and focusing horn positions are shown on the left and
the corresponding energy spectra on the right.

in Fig. 3.8. Both detectors are made up of alternating layers of 2.54 cm thick steel and 1 cm

thick scintillator strips of 4.1 cm width. An air gap makes the total plane separation up to

5.95 cm. The scintillator strips are aligned perpendicular to one another at ±45 degrees in

U and V views to allow three dimensional reconstruction.

Figure 3.7: The MINOS Near (left) and Far (right) detectors.
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3.2.1 Near Detector

The ND is located 110 m underground at Fermilab. It is a 4.8 m wide, 3.8 m high

squashed octagon with a length of 16.6 m. It consists of 282 steel planes and has a mass of

980 tons. The first 120 planes (except the first) are instrumented with scintillator. Of these,

every fifth plane is fully covered with scintillator and the other four are partially covered.

Of the remaining planes, every fifth plane is fully covered with scintillator, the intermediate

four planes having no scintillator at all. See Fig. 3.9 for the cross section of a ND plane.

Figure 3.8: A schematic of a MINOS detector showing the scintillator strips and the darker
steel planes.

The detector is designed such that the upstream part of the ND is more finely instru-

mented, and is used for hadronic shower energy measurements. This part of the detector

is called the calorimeter. The partially instrumented second half of the detector, called the

spectrometer, is used for muon tracking.

The detector is magnetised with a magnetic field of ∼1.3 T. The magnetic field focuses

the particles of one charge sign and defocuses the other and allows the reconstruction of the

charge of a particle travelling through the detector. The curvature of a charged particle is

also used to reconstruct its momentum. The beam axis is displaced 1.48 m horizontally from

the coil, in a region where the magnetic field is similar to that in the FD, so as to minimise

the number of tracks crossing the coil hole region.
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Figure 3.9: The cross-section of a MINOS ND plane. The grey area is covered with scintillator
in the partially instrumented planes, the entire plane being covered in the fully instrumented
planes. The central diamond shows the position of the coil. The dark circle marks the centre
of the neutrino beam.

3.2.2 Far Detector

The FD consists of 486 octagonal steel planes 8 m across. It has a length of 31 m and a

mass of 5.4 kton. The FD is split into two supermodules of 249 and 237 planes, separated by

a gap of approximately 1.2 m. The event rate at the FD is of the order of a few events per

day, in contrast to approximately ten interactions per spill at the ND. It is located at a depth

of about 705 m in the Soudan mine, to reduce the cosmic ray background. Cosmic rays are

also vetoed by a veto shield covering the top of the detector along its length. Each plane is

fully covered with 192 strips of scintillator, except the front plane of each supermodule. The

FD is also magnetised with an average magnetic field of ∼1.4 T, similar to that in the ND.

The Near and Far Detector scintillator module arrangements are shown in figures 3.10 and

3.11.
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Figure 3.10: The arrangement of scintillator strips on the Near Detector planes.

Figure 3.11: The arrangement of scintillator strips on the Far Detector planes.

3.2.3 Calibration Detector

To look at the response of the MINOS detectors to known-energy particles of various

types a calibration detector, or CalDet, was installed at CERN. It was smaller in size but

functionally equivalent model of the MINOS Near and Far Detectors. It consisted of 60 un-

magnetised planes, each 1 m2 area and 2.50 cm thickness, of the same steel and scintillator

structure as the two main MINOS detectors. The planes were instrumented with 24 scin-

tillator strips per plane. To compare the differences in the Near and Far readout systems’
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responses, the strips were read out at one end by ND and at the other by FD electronics.

Scintillation light was carried by WLS fibres. Fig. 3.12 shows a subsection of the calibration

detector.

Figure 3.12: A CalDet subsection of 12 planes. The full detector was made of twelve such
subsections. Detector planes are shown on the left and readout equipment on the right.

The CalDet was placed in CERN PS (proton synchrotron) test beams consisting of elec-

trons, muons, pions and protons of momenta ranging between 0.2 and 10 GeV/c and collected

data between 2001-2003. The responses of the Near and Far Detector readout systems were

found to be identical within 0.6 % [104]. Observations of muons in the detector allowed a

systematic error to be placed on muon energies measured from range. This will be discussed

in a later section. Observations of hadronic and electromagnetic showers allowed the calori-

metric energy resolution in MINOS to be measured as (55%/
√
energy) for hadron showers

and (20%/
√
energy) for electrons.
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3.3 The Detector Technology

3.3.1 Steel

The average steel density is 7.85 ± 0.03 g cm−3 [105]. The typical RMS deviation of

plane masses is 0.35% (the plane thickness varying by 0.3%) [105].

3.3.2 Scintillator

The structure of the scintillator strip is shown in Fig. 3.13. The strips are made of

polystyrene doped with scintillator fluors PPO (1% by weight) and POPOP (0.03 % by

weight) and covered in a reflective coating of 85% polystyrene and 15% TiO2 by weight.

A charged particle travelling through the strip excites the fluor, which emits the absorbed

energy in the ultra violet region peaked at 420 nm. Wavelength shifting (WLS) fibres,

Figure 3.13: Cross-section of a MINOS scintillator strip.

1.2 mm in diameter, are embedded in a 2 mm deep groove in the middle of each strip and

run along the length of the strip. These WLS fibres absorb the UV scintillation light and

re-emit it at a wavelength beyond 470 nm, and transport it to the end of the strip. The
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scintillator strips are grouped into modules of 13 to 28 strips and enclosed in a 0.5 cm thick

aluminium casing. The Near and Far Detector module arrangements are shown in Fig. 3.10

and 3.11.

3.3.3 Photomultiplier Tubes

Light from the scintillator strips is carried by the WLS fibres, via clear fibres, to Hama-

matsu multi-anode photomultiplier tubes (PMTs). The ND is read out by 64-anode (M64)

PMTs each anode of which acts as a single-anode phototube; the FD by 16-anode PMTs

(M16). The ND PMTs have a typical gain of ∼0.8 × 106 and the FD PMTs have gains up

to 1 × 106. The voltage across the PMTs required to achieve these gains is ∼800 V. The

WLS fibres which are bundled into an optical connector, are fed to an optical cable. This

cable carries the signal into the multiplexing (MUX) box. Inside the box, clear fibres carry

the light onto the face of the PMT. Fig. 3.14 shows the readout of scintillator strips by

photomultiplier tubes. The PMTs are housed in steel crates, which are light-tight and also

shield the PMTs from the magnetic field.

In the FD, eight scintillator strips from a single detector plane, which are at least 1 m

apart, are read out by each PMT anode. This is feasible because the transverse spread of

hadronic or electromagnetic showers from beam neutrinos is limited within 1 m region. To

enable determination of which strip was actually hit, the 8 strips read out by a single pixel

on one side of the detector are read out by 8 different pixels on the other side. The FD gains

are linear up to 100 photoelectrons and have a quantum efficiency (QE) greater than 12%

for a photon of 520 nm wavelength.

Each scintillator strip in the first 120 planes of the ND is read out individually by one

anode. In the remaining planes there is a 4:1 multiplexing, where four scintillator strips

from a single plane are read out by a single anode. The four multiplexed strips are separated

by approximately 1 m. This allows the ambiguities in muon tracking to be resolved during

event reconstruction using information from adjacent planes to identify the actual strip hit.
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Figure 3.14: Schematic drawing of the scintillator system readout for a module. An edge of
a detector plane is on the right side of the sketch, showing several strips extending out of
a scintillator module and beyond the edge of the plane for clarity. The light produced in a
strip travels out of the module in a WLS fiber, and is then carried by a clear optical fiber
(assembled into a cable) to a MUX box where it is routed to a pixel of the PMT assembly.

The PMTs have a linear response for input pulses of up to 50 photoelectrons. The quantum

efficiency (QE) is about 12% for a photon of 520 nm wavelength.

An artifact of the multi-anode design of the PMTs is that charge can drift from one

anode to another. This allows a low pulse height hit (usually of less than one photoelectron)

to be registered at a nearest neighbor of an anode. This phenomenon is referred to as cross

talk. Total cross talk in all pixels of PMTs is 3.74% in the ND and 3.2% in the FD PMTs.

3.4 The Magnetic Field

Both MINOS detectors are magnetised by a coil of current-carrying cables that passes

through a hole cut through the length of the detector. The FD coil hole is at the centre of

the octagon and each supermodule is magnetised independently by its own coil. The coil

consists of 190 turns of copper wire with Teflon insulation and is enclosed in a water-cooled
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copper jacket. Fig. 3.15 shows the cross section of a FD coil. An 80 A power supply gives

a 15.2 kA-turn total current providing an average toroidal magnetic field of 1.3 T strength

[105]. One coil dissipates about 20 kW of power.

Figure 3.15: Cross-sectional view of one of the Far Detector supermodule coils. The larger
diameter circles represent the copper cooling tubes and the smaller circles are the 190 turns
of 1/0 gauge stranded copper wire.

The ND coil hole is offset 55.8 cm from the centre of the plane and the detector is

placed such that the beam is centred half-way between the hole and the left vertical edge of

the detector. This minimises the number of tracks that travel through the uninstrumented

coil hole region and get reconstructed poorly. Due to the squashed octagon geometry, a

40 kA-turn current is required to achieve sufficient field [105]. The cooling is provided by

a closed loop low-conductivity water (LCW) system that transfers out the heat from the

cables. The coil has eight turns and dissipates a power of ∼47 kW. The magnetic field in

both detectors’ fiducial volumes are nearly uniform. Field maps of both detectors can be

seen in Fig. 3.16.

3.5 Electronics and Data Acquisition

While the Near and Far Detectors were designed to be as similar as possible to minimise

the effect of systematic uncertainties, the same electronics could not be used for both the
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Figure 3.16: Magnetic field maps for a typical near (left) and far (right) detector planes.
The grayscale indicates the magnetic field strength B as calculated by finite element analyses
using 3-D models. The detector planes are shown looking upstream to the neutrino beam.

detectors. Since the FD is 705 m underground, the cosmic muon rate is around 0.5 Hz.

Furthermore, the beam neutrino interaction rate is of the order of a few per day. By contrast,

in the ND there are of the order of 10 neutrino interaction events per 8 - 10 µs long spill.

Due to the widely different neutrino event rates and cosmic ray interaction rates, the two

detectors have different electronic requirements. The primary goals of the electronics are

to provide adequate information for the separation of neutral and charged-current neutrino

events and to enable the measurement of the energies of particles with minimum bias. The

design goals of the data and acquisition systems (DAQ) are described below. The Near and

Far Detector front end electronics are described separately, followed by a section describing

the DAQ which is common to both the detectors.

3.5.1 Near Detector Front-End Electronics

In order to reconstruct all the events produced, the ND electronics are designed to be fast

and have no deadtime [105, 106]. The shortest time required to be resolved is that between

adjacent buckets of MI protons: the smallest discrete groups of protons forming the neutrino
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beam. The size of these buckets is defined by the frequency of the accelerator’s RF cavities:

53 MHz. The ND electronics is therefore designed to have a time resolution of 18.8 ns.

The signal from each PMT anode is fed into a QIE (Charge (Q) Current (I) Encoder),

which consists of a current splitter, gated integrator and range selector. The signal first

encounters a current splitter, which divides the current into eight ranges with values I/2,

I/4, ..., I/256 and integrated onto a capacitor for each range. See Fig. 3.17 for a plot of the

QIE response. Each capacitor is sensitive to its respective range of current. The capacitors

of all ranges below that corresponding to the signal size are saturated, the current in the

first unsaturated range providing the precision measurement of the signal. A bias current

is added to ensure that the voltage across one and only one of the capacitors is within the

predetermined limits of the ADC, which is selected by the range selector and output to

the ADC, along with a three bit number indicating the range value. This system works to

increase the dynamic range of the readout.

The current splitter integrates all the current in a single 53 MHz clock cycle, the first

unsaturated range being selected in the next cycle. In the subsequent cycle this analog

signal is converted to an eight bit digital signal using an ADC (analog to digital converter;

not part of the QIE itself). A fourth clock cycle is required to reset the capacitors in the

current splitter. To prevent the readout being dead for the three clock cycles following the

integration stage four current splitters reside on each QIE, each integrating in turn for one

cycle, all using the same range selector and ADC. In addition to the 8-bit ADC value and the

3-bit range value, a 2-bit code (called CAPID) identifies the current splitter and capacitor

from which the signal was read. This 13-bit word is received by a 1000 word FIFO (first in,

first out) buffer. This FIFO is large enough to buffer all words in a 10 µs spill.

The QIE is mounted on a board called MENU (MINOS Electronics for Neutrinos), the

smallest front-end electronics unit. A MENU holds a QIE chip, an ADC and a FIFO along

with a DC current injector which can inject a signal into the QIE for calibration as shown

in Fig. 3.18.
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Figure 3.17: Response of the QIE-chip based electronics: x-axis shows the amount of charge
injected into the chip, while y-axis shows the ADC response for the different ranges. Only
the first five out of the eight ranges are shown.

Sixteen MENU modules are mounted on a MINDER module (MINOS ND Electronics

Readout), which time-stamps the signals and controls the modes of the MENUs (e.g. initi-

ating the calibration mode). The MINDER reads sequentially all words from all its FIFOs,

sending them to a single FIFO on the next module in the chain: the MASTER module (MI-

NOS Acquisition, Sparsifier and Timestamper for Event Readout). Each MASTER module

holds eight MINDERs. It reads the data from these MINDERs into two buffers, which are

read out by a VME computer (one buffer is written to while the other is being read). The

VME computers send the data to the data acquisition (DAQ) system. Fig. 3.19 shows the

schematic overview of the ND front end electronics.

3.5.2 Far Detector Front-End Electronics

The FD electronics were specifically designed for the low rate underground environment,

as discussed in [107]. The neutrino beam generates only a few events per day and the cosmic
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Figure 3.18: Block diagram of a MENU module and a MINDER module.

muon rate 705 m underground is ∼0.5 Hz. Therefore some deadtime can be tolerated. A

diagram of the FD front-end electronics is presented in fig. 3.20.

Each PMT is read out by a single chip, called a VA chip. Only 17 of its 32 channels are

used. 16 channels are used to read out an anode each, and one channel reads out the PIN

diode monitoring the light injection system, see Sec. 3.1. The VA chips are mounted on VA
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Figure 3.19: Overview of the MINOS Near Detector readout electronics.

front-end boards (VFB) which provide power control and biasing for the VA chips. The VFB

also houses a chip called ADSLite. This chip compares the dynode signals from the PMTs

with a common programmable threshold to provide a discriminated signal for time-stamping

and readout initiation.

The VFBs feed an analog/digital converter which is housed on a VMM (VA Mezzanine

Module); two VFBs are connected to one VMM. The VARC (VA Readout Controller) handles

signal digitization, triggering, time-stamping and bias of the VA chips. The VFBs are fully

controlled by the VARC. One VARC module reads 36 PMTs through 6 VMMs, each of

which read 6 PMTs. The digitization of the VA chip takes 5 µs, meaning if all six need to

be read out, all six chips would be dead to new signals for ∼30 µs. In order to alleviate
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the deadtime cost of reading out, at least two dynode signals within a 400 ns window are

required to trigger readout.

Figure 3.20: Overview of the MINOS Far Detector readout electronics.

The digitized data are sent to a FIFO, pedestal subtracted then written to an on-board

VME memory, which is subsequently read out by the DAQ.

3.5.3 Data Acquisition

The Near and Far Detector data acquisition systems are functionally identical, with

appropriate front-end software accommodating the differences of the front-end electronics of

the two detectors. A diagram of the FD DAQ components is shown in Fig. 3.21. The DAQ

system is designed to continuously read out the front-end electronics in an untriggered, dead

time free manner and to transfer the data from all front-end modules to a small farm of PCs

where software algorithms build and select events of interest and perform monitoring and

calibration tasks. A detailed description of the DAQ system architecture can be found in

[108].
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Figure 3.21: The architecture of the MINOS DAQ system for the Far Detector. For clarity,
only one of the six PVIC input branches is completely illustrated.

The DAQ reads out data continuously but only writes it to disk under certain conditions.

The ND DAQ is triggered by the beam spill signal at Fermilab and all data arriving within

a 100 µs window around the spill is recorded. Since the FD is not at Fermilab, it cannot

be triggered directly by the beam spill. Instead, it receives the GPS timestamp of the beam

spill from the ND via the Internet.

The MASTER module described earlier has two buffers, one of which is being written

while the other is being read out by a Readout Processor (ROP). There are 16 ROPs serving

the FD and 8 serving the ND. The buffers are read for the duration of one timeblock, 10-50 ms

long. Each ROP assembles consecutive time blocks in memory for one time frame, which

is nominally one second in duration. When requested, the ROPs transfer them to Branch

Readout Processors (BRPs). One BRP acts as the master and coordinates the transfer of

data. Each BRP is also connected to an output branch which connects the BRPs to a small

farm of trigger processors (the TPs). When a time frame has been successfully transferred

to the BRPs, the master BRP selects a TP and instructs each BRP to send its time frame

to an address in the TP memory. This way a full time frame of data from the entire detector
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is available in a single TP for processing.

The TP performs a number of processing tasks on the time frame data, and also applies

software triggering algorithms to locate events of physics interest. The output from the trig-

ger is called a snarl and, in principle, can gather multiple events (notably the spill triggers).

The primary triggers are summarised below. The triggers fall into three categories: special

triggers for debugging and calibration, bias-free triggers based on spill signals or spill times

to gather beam events, and triggers based on the clustering of hits in the detector to gather

out-of-spill events.

(i) Spill trigger: At the ND, each digitization that occurs within the spill gate is tagged

by the front-end electronics. These are identified, extracted from time frame and output as

a single spill event with no further selection.

(ii) Remote spill trigger: At the FD a direct spill signal is not available so a remote spill

trigger is applied. The ND GPS system is used to generate time-stamps of the spill signals.

These are transmitted to the FD over the internet where they are stored and served to TPs

on request. All readout within a configurable time window around each spill is extracted

and written out as a spill event.

(iii) Fake remote spill trigger: In addition to the actual spill trigger, fake spill times are

also generated randomly between spills to provide random sampling of detector activity.

(iv) Plane trigger: This is a customisable trigger used to write out events when M

detector planes in any set of N contiguous planes contain at least one hit. Nominally M = 4,

N = 5 for physics analysis.

(v) Energy trigger: This trigger is used to write out events when M contiguous planes of

the detector have a summed raw pulse height greater than E and a total of at least N hits

in those planes. Nominally M = 4, E = 1500 ADC counts and N = 6.

(vi) Activity trigger: This requires N planes to register activity across the detector.

Nominally N = 20.

(vii) Special triggers: In addition to the above triggers, a number of special triggers are
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available which are used when performing detector and electronics calibration or debugging.
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Chapter 4

Calibration, Event Reconstruction

and Monte-Carlo Simulation

4.1 Calibration

The oscillation analyses in MINOS rely on the comparison of neutrino energy spectra

and event characteristics in the near and far detectors. The measurement of neutrino energy

further depends on the accurate measurement of the absolute muon energy and absolute

hadronic energy deposited in the detector after a neutrino interaction. The detector response

can vary within the detector region and also with time which may significantly affect the

accuracy of this measurement. A calibration system is used to account for these variations

and to make the energy response of the near and far detectors to be consistent with each

other.

MINOS uses a multi-step calibration chain to convert the raw detector pulse height to a

fully corrected signal by correcting for the scintillator light output variations as well as non-

uniformities of light transmission and collection in fibres, PMTs and readout electronics. The

calibration uses both the optical light-injection (LI) system, which measures the behaviour

of the readout instrumentation, and cosmic ray muon tracks, which give the response of the

scintillator. The full chain can be broken down as follows:
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Qcorr = Qraw(s, x, t, d)×DPMT(d, t)× L(d, s,Qraw)

×Dscint(d, t)× S(s, d, t)× A(d, s, x)×M(d) (4.1)

where s is the strip hit, x is the position in the detector, t is the time of the hit, d is the

detector (near or far) where the hit occurred. Qraw is the raw photomultiplier response; D is

the drift correction that accounts for changes in scintillator, PMT and electronics response

with temperature and time; L linearises the response of each channel; S removes differences

from strip to strip; A corrects for attenuation depending on the position of the hit in the

strip, and M is the energy scale factor that corrects the pulse height to the same energy unit

in both detectors.

4.1.1 Calibration Procedure

PMT and Electronics Drift, DPMT(d, t):

The light injection (LI) system [109, 110] is designed to monitor and compensate for

changes in the PMT gains and non-linearity. It uses light-emitting diodes (LEDs) to inject

ultraviolet light into the wavelength shifting fibres, simulating scintillator light. A set of 20

LEDs are housed in a pulser box and illuminate multiple individual fibres. The intensity of

injected light is monitored by PIN diodes while being simultaneously read out by PMTs.

The LI system pulses periodically at the end of every strip: 300 times per hour at the FD

and 1000 times per hour at the ND. This is designed to average 50 photoelectrons per pulse

per PMT pixel in both detectors. Changes in LED intensity can lead to variations of up to

a factor of two in this light level; such changes are monitored and corrected.

This LI data is collected once a month at each detector. The PMT gains are measured

using photon statistics [109]. Gains measured by the LI system provide corrections to the

PMT gain and electronics response. Short term variations that are usually due to tempera-
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ture variations can be eliminated by good environmental control, while longer term variations

due to aging and changes in hardware amount to ∼ 4%/year.

Linearity, L(d, s,Qraw):

The PMT and electronics responses are not linear for light levels greater than approx-

imately 100 photoelectrons. The LI system is utilised to correct for this nonlinearity by

injecting a known intensity of light into scintillator strips, ranging from a few to hundreds

of photoelectrons, and measuring the electronics response as a function of true illumination.

In the ND, the charge integration and ADC electronics are also calibrated for linearity by

directly injecting charge into the front-end electronics.

Scintillator Drift Correction, Dscint(d, t):

The scintillator response changes in time as the material ages. Aging reduces the light

level by about 2% annually and environmental variations, mainly temperature, result in

short-term changes. The response of the detectors is measured by monitoring the median

response of a detector plane to through-going cosmic muons. Although the spectra of cosmic

muons are different between detectors, due to differences in depth, zenith angle and latitude,

the energy spectra and rate of cosmic muons going through one detector is time independent.

It is therefore possible to calibrate for this drift by comparing the median detector response

at time t to the response at time t0, the beginning of the experiment:

Dscint(d, t) =
Median response (d, t0)

Median response (d, t) :
(4.2)

Strip-to-strip Calibration, S(s, d, t):

The strip-to-strip non-uniformity correction accounts for several detector effects including

scintillator light yield, WLS collection efficiency, differences in attenuation in the optical

fibres, PMT quantum efficiency and PMT gain. The correction is obtained by using cosmic

ray muons in the minimum ionising energy range (a few GeV) [105], since these muons’
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energy deposition is relatively independent of their momenta. An individual strip’s response

is characterised by constructing the muon spectrum for that strip from cosmic ray muon

data accumulated over a period of time. The calibration constant is calculated every month

as the strip response normalised by the mean response of all strips:

S(s, d, t) =
Mean response of whole detector (d, t)

Response of strip (s, d, t) :
(4.3)

Attenuation, A(d, s, x):

This correction accounts for the variation in light as a function of distance along the strip

mainly because of attenuation in the WLS fibres. The calibration constant is given by:

A(d, s, x) = Ad,s1 e−x/L
d,s
1 + Ad,s2 e−x/L

d,s
2 (4.4)

where x is the transverse position along the strip and Ld,s1 and Ld,s2 are the attenuation lengths.

This correction was calculated by using a module mapper. The module mapper measured

the response of each scintillator module to ionising radiation using a 137Cs source. To obtain

the calibration constant, i.e., the values of A1, A2, L1 and L2, a fit is performed for each strip

and the resulting parameters are used to correct the data [105]. The attenuation correction

was later cross checked by using through-going muons and was found to be consistent to

within 4%.

Inter-detector Calibration, M(d):

After correcting each of the three detectors’ responses to be spatially and temporally

consistent within one detector, the calorimetric responses of the near, far detectors and

CalDet are calibrated to normalise the energy scales of the three detectors. This calibration

is performed by using stopping cosmic ray muons. Stopping muons are used because their

momenta can be accurately determined from their range. The energy loss of a muon by

ionisation, as described by the Bethe-Bloch equation, is shown in Fig. 4.1.
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All the MINOS detectors have the same scintillator strip width. Therefore, by measur-

ing the detectors’ response to muons of a certain track length the inter-detector calibration

can be performed. A “track window” technique is used to maximise the accuracy, where

the response of muons is only measured when their momenta lie between 0.5 and 1.1 GeV.

This avoids using the end of the track where the losses by ionisation increase very rapidly

(as shown in the left side of the curve of Fig. 4.1). This minimises the dependence on the

muons’ momentum measurement. This technique allows for the determination of the inter-

detector energy scale with a 2% uncertainty. The scale is measured in terms of Muon Energy

Units (MEUs). One MEU corresponds approximately to the average detector response to a

minimum ionising muon traversing 1 plane of scintillator at normal incidence.

Figure 4.1: Stopping power of muons as a function of their momentum. The prediction by
the Bethe-Bloch equation in polystyrene scintillator agrees very well with the MINOS FD
data and the MINOS MC simulation. Both data and MC points have been normalised to
the Bethe-Bloch calculation to give the expected stopping power at the minimum ionising
point. Image from [105].
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4.1.2 Absolute Energy Scale

As a final step the energy depositions in the near and far detectors are expressed in terms

of an absolute energy scale. This way the response of the detectors can be understood for

muons, electrons and hadrons of a certain energy.

The absolute track and shower energies were determined using data collected by CalDet

while it was exposed to various test beams of known composition and energy at CERN.

The CalDet collected data with pions, protons, electrons and muons of both positive and

negative charge signs in the energy range 200 MeV to 10 GeV with both near and far

detector electronics. By comparing the calibrated shower energy (in MEUs) to the known

energies of the particle beams (in GeV) the absolute calibration of the detector energy

response is achieved. The CalDet data were also used to benchmark the hadronic and

electromagnetic shower simulation and to determine the energy resolution. Fig. 4.2 shows

the measured detector response to pions and electrons compared to the simulation result.

The range of stopping muons (of momenta smaller than 2.2 GeV/c) was modeled to better

than 3% accuracy with GEANT3, while the detector response to electrons was simulated

with an accuracy better than 2%. The pion and proton induced showers were reproduced

to better than 6% accuracy with the GCALOR [111] simulation. The energy resolution was

adequately reproduced by the simulation and may be parameterised as 56%/
√
E
⊕

2% for

hadron showers and 21.4%/
√
E
⊕

4% for electromagnetic showers, where the energy E is in

GeV.

A summary flow chart of the calibration procedure is given in Fig. 4.3. The plots

in Figures 4.4 and 4.5 show how the calibration chain affects the response in the far and

near detectors, respectively. It is clear that the response is very uniform across the whole

detector after calibration. But the calibration procedure is not perfect, and differences in

calorimetric response between the two detectors to the same energy scale are incorporated

as detector-specific systematic uncertainties.

Recent studies have checked the consistency of the MINOS calibration procedure by
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Figure 4.2: Calorimetric response to pions and electrons at three momenta. The calorimeter-
signal scale is in arbitrary units. The data obtained from CalDet is compared to the simu-
lation. Image from [105].

calculating the change in drift, PMT response and light level changes in the FD and ND

since the beginning of MINOS running. As shown in Fig. 4.6 the response is found to be

stable within 0.5% and 1.5% for ND and FD, respectively. The light level studies performed

on the FD to measure the change in the light level obtained from the PMTs since the

beginning of MINOS running have shown that the detectors are aging non-uniformly. More

details on the light level studies are given in Appendix A.
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Figure 4.3: A summary of the MINOS calibration procedure. Each step corresponds to a
correction factor in Equation 4.1. The correction from raw pulse height (ADC) to SigLin
applies the linearity calibration, L and drift correction D; from SigLin to SigCor the strip-
to-strip calibration S; from SigCor to SigMap the attenuation correction A and finally the
absolute energy scale calibration M to convert the raw signal into the standardised energy
unit MEU. Taken from [105].
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Figure 4.4: Response of the Far Detector in ADCs(left), in SigCors(middle) and in
SigMaps(right), as a function of detector position, for U strips.

4.2 Event Reconstruction

The MINOS detectors record neutrino interactions from NuMI beam spills and from

muons induced in the surrounding rock as well as cosmic ray muons whose tracks have74
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Figure 4.5: Response of the Near Detector in ADCs(left), in SigCors(middle) and in
SigMaps(right), as a function of detector position, for U strips.

Date

2005 Jan. 1 2007 Jan. 1 2009 Jan. 1 2011 Jan. 1

D
e
t.
 R

e
s
p
o
n
s
e
 (

%
)

99.0

99.5

100.0

100.5

101.0

MINOS Near Detector

Date

2005 Jan. 1 2007 Jan. 1 2009 Jan. 1 2011 Jan. 1

D
e
t.
 R

e
s
p
o
n
s
e
 (

%
)

98

99

100

101

102

MINOS Far Detector

Figure 4.6: Far (above) and Near (below) detector MEU as a function of time, as measured
using cosmic data. Individual runs outside of the Run period boundaries were removed.
Each point corresponds to one month’s worth of data. Each point is normalised to the
overall MEU for the whole period.

traversed the detector. The reconstruction software uses the low level information such as

hit topology and timing information contained in real or simulated raw data to reconstruct

high level objects, such as muon tracks and hadronic showers. The input to the reconstruction

chain is a snarl, and, in the ND, it typically contains several neutrino interactions. Each
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snarl corresponds to a beam-spill window or other trigger. The first step is to separate

the individual neutrino interactions both spatially and temporally, allowing overlapping or

simultaneous events to be distinguished. Fig. 4.7 shows a beam spill observed in the ND.

A snarl is divided into individual slices based on the position and timing information of the

hits. Tracks and showers are constructed from slices which are then assembled into events.

Physical event properties such as position, vertex, length, angle and momentum of tracks,

energy of showers are measured. An event may have more than one track or shower but one

of each is defined as the primary track and shower. The event vertex is assigned as the first

hit in the primary track.

Calibration, discussed in Section 4.1, aims to guarantee that the energy measurement is

accurate and independent of time, in each strip of each detector and across the entire energy

range. It also corrects for the relative near/far detector differences. This is particularly

important for the oscillation analyses which obtain the FD prediction by extrapolating the

ND data (see Sec. 5.3)

Figure 4.7: An example of a Near Detector snarl with several neutrino events distributed in
space (left) and time (right). Figure from [112].
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4.2.1 Event Topologies

MINOS beam events fall into four categories: charged current muon neutrinos (CCνµ),

charged current muon antineutrinos (CCν̄µ), charged current electron neutrinos/antineutrinos

(CCνe/CCνe), and neutral current (NC) events. There are also ντ and ν̄τ events, but they

are very few and indistinguishable from neutral current events in the MINOS detectors.

The CCνµ and CCν̄µ events are characterised by long, curving muon tracks (µ− for νµ

and µ+ for ν̄µ) with a hadronic shower at the interaction vertex. Such CCνµ and CCν̄µ

events can be distinguished by the direction of the track curvature in the detector magnetic

field. While running with neutrino-mode beam, both detector fields are typically tuned to

bend µ− inwards and µ+ outwards, and vice versa during antineutrino-mode beam. The

detector fields are chosen this way because tracks bent inwards are less likely to exit the

detector, allowing the more accurate range momentum measurement to be used. CCνe/CCνe

and NC interactions produce events without muon tracks, though they sometimes still have

short reconstructed tracks. CCνe/CCνe events are characterised by compact electromagnetic

showers and NC events are characterised by more diffuse hadronic showers. Specific analyses

have been performed for both the CCνe/CCνe sample [113] and the NC sample [114], but in

the analyses presented in this thesis it is not necessary to distinguish between CCνe/CCνe

and NC events. Fig. 4.8 shows event displays from a CCνµ, a CCν̄µ and an NC interaction.

4.2.2 Slice Formation

In the ND we expect multiple neutrino interactions per snarl, which poses a challenge

in separating individual showers and events. Therefore, the first step in the reconstruction

chain is dividing the snarl into slices, which are clusters of hits localised in space and time.

Calorimeter strips with charge deposition greater than two photoelectrons (pe), a time gap

between two strips of shorter than 20 ns and a total time span of less than 300 ns are formed

into a slice. Slices must contain at least two strips. If the slice thus formed has two strips

with a spatial gap of greater than 1m in the longitudinal direction, the slice is split into two
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Figure 4.8: The three event topologies relevant to the antineutrino analysis: CCνµ (left),
CCν̄µ (centre), and NC (right). The top row shows the Feynman diagram and the bottom
row shows a representative simulated event in one view (i.e. only U planes). CC events
are characterised by long muon tracks which curve in opposite directions for CCνµ and
CCν̄µ. NC events do not have true muon tracks, but can have fake tracks which make
them a background at low energy. The green points are hits with light levels below two
photo-electrons and are not included in the analysis.

provided it doesn’t span the coil hole. Calorimeter strips with a charge smaller than 2 pe

and spectrometer strips are added to the most suitable slice based on timing information.

The FD snarls are also sliced into multiple events, but the event rate is low enough that only

one slice will typically be formed.

4.2.3 Track Reconstruction

Once the snarl has been split up into slices, the next step is the application of a track-

finding algorithm. This algorithm uses a Hough transform [115] to find track segments

consisting of several hits in an approximate line across several detector planes. The track

finder joins these segments to form a ‘seed track’. The seed track is fit using a multi-pass
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Kalman Filter [116]. The filter works by moving forwards and backwards along the track

estimating the state of the muon at each point along the track. It includes the effects

of noise and multiple scattering in its estimate as well as the expected curvature in the

magnetic field. Based on this information the filter decides whether or not the hit is a

part of the track. After two passes with the filter, the track momentum (or more precisely,

charge-to-momentum ratio (q/p)) is obtained from fitting the trajectory of the track. Other

track properties are also measured at this time in addition to the momentum, such as track

beginning and end positions in two views and the uncertainty in the charge/momentum

measurement. At 3 GeV the resolution of this measurement is 11%.

If the track ends in the detector a second, more accurate measurement of its momentum

is obtained from range. This measurement has a resolution of 4.6% and is used for all tracks

that do not exit the detector or end in the uninstrumented coil hole region. This task is

performed by the swimmer which swims a muon backwards along the track from the track

end to the beginning and summing the energy it should have lost in the steel and scintillator

using the GEANT3 simulation [117].

Muons with energies between 10 MeV and 10 GeV lose energy through ionisation which

is well described by the Bethe-Bloch equation [118, 116]. This is precisely the energy regime

relevant to oscillations in MINOS. CalDet demonstrated the accuracy of the Bethe-Bloch

equation as tabulated by Groom [116] with material-specific density effects tabulated by

Sternheimer [119, 120]. The uncertainty between data and simulation was calculated to be

2% by incorporating the Groom tabulation into GEANT3. This is taken as the systematic

uncertainty on the measurement from range. Since 95% of the energy loss occurs in the steel

planes, each of which is nominally 1.46 radiation lengths thick, the amount of steel the muon

passes through must also be known precisely. The density of the steel was measured to an

accuracy of 0.3% and the near and far detector plane thicknesses were measured to 0.1%

and 0.2% respectively.

The curvature-based measurement of the track momentum was calibrated by compari-
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son with the range-based measurement. The two energy measurements were compared for

stopping tracks, and it was found that the curvature-based measurement generally agreed

with the range-based measurement to within 1%. This 1% is conservatively added linearly

to the 2% uncertainty from the range measurement, leading to a total uncertainty of 3%.

4.2.4 Cluster Formation and Shower Reconstruction

Once the track is identified, the remaining hits localised in space and time are clustered

together to construct the shower. Hits that are part of a track but have more energy than

what the muon would have deposited are added to the shower after the muon part is removed.

Only hits with an energy deposition of greater than two photoelectrons are considered since

the low pulse height region is difficult to model. The shower energy cannot be reconstructed

topologically since the detector granularity is too coarse to distinguish individual components

of a shower. There are two methods to measure the shower energy described below.

One method of measuring the shower energy is calorimetry where the energy of the shower

is calculated by summing the energy deposited by all of its constituent hits (after the energy

deposited in the steel is recovered). By this method, the hadronic shower energy resolution is

56%/
√
E
⊕

2% and the electromagnetic shower energy resolution is 21.4%/
√
E
⊕

4% [105].

Another way of measuring shower energies is the k-nearest neighbors (kNN) method,

which employs a multivariate neural network technique to improve the energy resolution of

the showers, making use of a broader range of information about the shower, and the event

as a whole. With this method, shower energies are reconstructed by using the amount of

deposited energy as well as the spatial distribution of energy deposition in the shower. The

method is presented in detail in [121] and is summarised here.

To implement the kNN algorithm in estimating shower energy four elements are required:

the training set, the variables for building the multi-dimensional feature space, the number

of nearest neighbors and an energy correction function. The algorithm begins by taking a

training sample of Monte Carlo events which have passed the charged-current selection, dis-
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tributed across the run periods in the correct proportions to accurately reflect the properties

of the data. Separate samples are used for the near and far detectors to allow for inter-

detector differences. For a D-dimensional kNN, a set of D variables is considered which

characterise the properties specific to the shower component of an event and which correlate

with the true shower energy. The distribution of Monte Carlo events in this D-dimensional

space is known, since their true shower energies as well as the true values of the D variables

are known. The k nearest neighbors of the query event, whose shower energy is being esti-

mated, are found by computing its Euclidean distance to each of its neighbors and taking

the k closest ones. Let y be the query event we seek to identify and x the Monte Carlo event

whose true parameters are known. The squared distance between the two is given by

∆s2 =
i=1∑
D

(yi − xi)2

σ2
i

, (4.5)

where σi is the standard deviation of the variable i. The normalisation by the standard devi-

ations is necessary to ensure consistency in the scales of the variables. The scale differences

can be large since the variables are not necessarily in the same units, and if they are not

normalised the one with the widest numerical range would dominate.

To estimate the shower energy of a candidate event, the k closest training events are found

in the D-dimensional space formed by the input variables. The output energy estimate is

then the mean of the true shower energies of these training events, illustrated in Fig. 4.9.

The number of input variables, D, and the number of nearest neighbors, k were optimised

to maximise the sensitivity to oscillations [121], and the kNN selector with D = 3 was

selected. The three variables are:

• Calorimetric energy in the first two showers,

• Total energy deposited within a 1 m radius of the track vertex,

• Number of planes in the primary shower.

The same set of three variables is used for energy estimation in both the near and far
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Figure 4.9: Illustration depicting the use of the kNN technique for shower energy estimation.
In this two-dimensional space, higher energy training events (represented by larger circles)
correlate with larger values of the variables. The energy of the event marked by the star is
estimated by examining its k (here 20) nearest neighbours, highlighted in red. The energy
estimate is the mean of the true energies of these neighbouring events.

detectors, although based on training samples drawn from the respective Monte Carlo sam-

ples. Studies with varying the number of k neighbors yielded that the optimal number of

neighbors with maximum sensitivity for the size of the Monte Carlo sample used is k = 400.

4.2.5 Event Formation

Event formation is the stage where reconstructed tracks and showers are combined to

form candidate neutrino events. The final event object is therefore the combination of the

vertex shower and the most energetic muon track. The optimal combination of objects is

identified by considering the temporal and spatial distribution within each slice. For muon

neutrino interactions, the neutrino energy is estimated to be the sum of the energies of the

longest track and the vertex shower. The presence of a track with a clearly defined vertex is
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a condition applied when selecting a νµ or ν̄µ sample, in addition to cuts on other quantities

used to remove NC events where short tracks are mistakenly reconstructed within showers

(see Chapter 4)

4.3 Monte-Carlo simulation

The two-detector design greatly reduces the dependence of the MINOS analyses on the

MC simulation. Still, it is necessary to have a MC simulation that reproduces the data as

accurately as possible. The simulation needs to be used to predict the FD spectrum from

the measured ND spectrum, as well as to perform systematic studies. The MINOS data is

simulated in a multi-stage process that begins with the beam simulation using the FLUGG

MC generator [122, 123, 124]. The FLUGG package incorporates a geometry based on

GEANT4 [125] into a FLUKA [126, 127] simulation of the hadronic production, decay and

transport processes [128]. The simulation begins with the production of secondary mesons

from Main Injector protons incident on the graphite target. The mesons are transported

through the magnetic horns, into the decay pipe, and all other further downstream devices

and materials. Every hadronic decay that produces a neutrino is stored and later used for the

simulation of neutrino interactions. Based on the position and momentum of a neutrino, its

energy and the probability that it reaches the detector is calculated. Every neutrino is forced

to go through the detectors but with a weight based on its probability of actually doing so.

The resulting weighted neutrino flux is then passed to the MINOS detector simulation.

Neutrinos are sampled from the flux simulation, using a technique known as “importance

sampling” or “weighting” to reduce the number of low energy particles that are produced.

The simulation produces many more low energy mesons than high energy ones, which makes

it difficult to collect enough statistics at higher energies. To increase the number of high

energy events relative to the low energy ones, a 1 GeV tracking threshold is imposed, since

those mesons will produce approximately neutrinos of 500 MeV or lower, which is the lowest

energy that MINOS detectors are sensitive to. Events with energy less than 1 GeV are
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discarded. Even then too many low energy particles survive. To speed up the simulation

and to reduce the space required on disk, pions with energy less than 30 GeV are importance

sampled and weighted. This means that the particles having energy below the threshold of

1 GeV are discarded and the remaining particles are given a weight greater than one so

that the total flux after reweighting stays the same; νµ’s, µ’s, and K’s are not given any

additional weight. The weight W is calculated as,

W = Wparent
30GeV

|Ptotal|
, (4.6)

where Wparent is the importance weight of the particle’s parent (initial protons start with a

weight 1), and Ptotal is the total momentum of the particle. The weights are constrained to

lie between 1 and 100.

The neutrinos obtained after the rejection sampling are traced through models of the

near and far detector halls, allowing the neutrinos to interact both in the detector and in

the surrounding material. The neutrino interactions are generated by the NEUGEN [129]

neutrino event generator. NEUGEN simulates quasi-elastic scattering (QE), resonance pro-

duction (Res), deep-inelastic scattering (DIS) and coherent pion production (Coh) processes

in an energy range from 100 MeV to 100 GeV. The hadronisation is simulated with the

AGKY model [130], which uses a combination of PYTHIA/JETSET [131] at high hadronic

invariant mass and the KNO phenomenological model [132] at low invariant mass, with a

smooth transition between the two models. NEUGEN also includes the INTRANUKE [133]

model of intranuclear rescattering to account for the interactions of the hadronic particles

as they leave the nucleus.

Once the products of the interaction leave the nucleus, their simulation is taken over by

GMINOS which includes a detailed geometric model of the detector written in GEANT3

[117]. It also includes a detailed model of the magnetic field created using finite element

analysis and measured B-H curves from steel samples [105]. GMINOS transports the parti-
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cles through the detector geometry, recording their strip-by-strip energy depositions as the

particles lose energy into the steel and scintillator. At this stage, multiple neutrino interac-

tions, both from in the detector and in the surrounding material, are overlaid into a single

simulated snapshot in time to reflect the high ND event rate.

After the energies have been deposited on scintillator strips, the C++ based Photon-

Transport program takes over. PhotonTransport generates photons in the scintillator based

on the GMINOS energy depositions, transports those photons into the WLS fibre and onto

the PMT cathode where they are converted into photoelectrons. It includes the detailed

behaviour of the PMTs and electronics, including non-linearity, noise, cross-talk, and trig-

gering. Thus the simulation includes the best knowledge available on light levels, attenuation,

non-linearity and gains. Each simulated run is given a fictitious date from some time during

actual data taking and calibration constants from that time are used. Later, when calibra-

tions are re-applied, each Monte Carlo run is re-calibrated using the same data that was

used to produce it.

At this stage, the simulation is as similar to the real data as possible and both are handled

in the same way during reconstruction.

4.4 Analysis Dataset

MINOS has accumulated 15.6× 1020 POT between 2005 and 2012. Of this 10.56× 1020

POT was obtained in the low energy (LE) neutrino-dominated beam mode. An additional

0.15×1020 POT was also obtained in the neutrino-dominated mode but with a 10 GeV beam

peak. About 3.36 × 1020 POT was obtained in the LE antineutrino-enhanced beam mode.

Fig. 4.10 shows the POT accumulated per week (×1018) and the total accumulated POT

(×1020) for the entire MINOS running.

The analyses described in this thesis use the data accumulated in the LE neutrino-

optimised beam running shown by the green shaded area in Fig. 4.10. The first analysis

(Chapter 5), which studies the antineutrino component in the neutrino-optimised beam,
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Figure 4.10: The accumulated POT as a function of time for all MINOS running. The
dominant running mode is low energy neutrino production in the forward horn current (FHC)
configuration, shown in green. The antineutrino production mode, using the reversed horn
current (RHC) configuration is indicated in orange. The higher energy modes, at different
target positions, is shown in red.

uses the data obtained in a 7.1 × 1020 POT exposure collected between May, 2005 and

September, 2009. The second analysis (Chapter 6), which looks for antineutrino appearance

because of neutrino to antineutrino oscillations, uses all the data in a 10.56 × 1020 POT

exposure accumulated in the LE configuration.
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Chapter 5

Antineutrinos in a Neutrino Beam

The first 7.1× 1020 POT of data were taken with the NuMI beamline running in neutrino-

dominated mode. In this mode the beam has a small (approximately 7%) component of

antineutrinos. The disappearance analysis measures the ∆m2
32 and sin2 2θ23 parameters

from the oscillation survival probability in a two-flavour approximation:

P (νµ → νµ) = 1− sin2 2θ23 sin2

(
∆m2

32

L

4E

)
, (5.1)

where L is the length over which the neutrino travels and E is the energy of the neutrino.

As explained in 3.1 the antineutrino component in the FHC running comes primarily

from negatively charged mesons travelling through the centre of the magnetic horns that do

not get deflected. Due to this reason the antineutrinos have a higher energy as compared

to the neutrinos. The ND spectra of muon antineutrinos in FHC-mode is shown in Fig. 3.4

(shown in red).

For an oscillation analysis, to begin with, the ND and FD energy spectra are selected.

A measurement of neutrino spectrum at the ND enables us to make a prediction at the FD

in case of no oscillations. These two spectra are closely related but are not identical. In

addition to having lower statistics because of being further away from the neutrino source,

the FD also has a different spectral distribution due to the geometry of the beamline and

87



5.1. EVENT SELECTION

the meson decay kinematics. We use the Monte Carlo to account for these differences and

make predictions for FD spectrum in case of no oscillations or oscillations. This procedure

is called extrapolation. To measure antineutrino oscillation parameters the FD observed

event rate as a function of energy is compared with prediction. Using two-flavour oscillation

model given by equation 5.1 we fit for mixing angle and mass splitting between the second

and third mass states.

5.1 Event Selection

The ND and FD spectra are obtained by requiring that the events satisfy a series of

selection criteria. The aim is to select the largest possible sample of antineutrinos with the

least possible background contamination. Since the antineutrino itself cannot be observed

directly its properties are inferred from the outgoing particles produced when an antineutrino

interacts with nuclei in the detector. We use only charged-current (CC) interactions for this

analysis since the neutrino flavour can be determined based on the outgoing lepton.

νµ +N → µ+ + hadrons (5.2)

The magnetic field of the MINOS detectors is used to distinguish neutrinos from antineu-

trinos. The event topologies resulting from νµ and νµ CC interactions are described in

Sec. 4.2.1. The separation of neutrinos and antineutrinos relies on the fact that the two CC

interactions produce opposite sign outgoing leptons: νµ → µ+ and νµ → µ−. The torroidal

magnetic fields (approximately 1.3 T) in the two detectors cause the outgoing muons to

curve in different directions depending on their charge. When the detectors are in neutrino-

mode negative muons are focused and positive muons are defocused by the magnetic field in

the detectors and vice-versa. The reconstruction algorithm measures the track’s curvature,

which is proportional to the ratio of the tracks’s charge/momentum (q/p).

There are two main backgrounds to the CC νµ sample: CC νµ interactions whose charge
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has been mis-reconstructed (called ‘wrong sign’ or WS)

νµ +N → µ−(misidentified as µ+) + hadrons (5.3)

or neutral current (NC) interactions of any neutrino species which have a shower element

that is misidentified as a muon track

νx +N → νx + fake muon + hadrons. (5.4)

5.1.1 Preselection

To select the desired events the first step is to apply basic preselection cuts. It is required

that the accelerator and detector must be in good operating condition. The NuMI should be

operating in the low-energy mode for which the target is inside the first horn, the separation

between the two horns is 10 m and the horn current is 185 kA. Both detector coils need

to be ON so that the detectors are magnetised. The event must occur within a beam spill

so that atmospheric and cosmic backgrounds are reduced. Events must have at least one

muon track to eliminate most NC backgrounds. Track vertices are required to lie within the

fiducial volume of each detector to ensure that all the energy of the event is fully contained

in the detector and can be measured.

5.1.2 Selection

The next step in selecting antineutrinos is to keep only events with positive reconstructed

charge. However, the antineutrino component in the beam is so small that even this selected

sample is dominated by backgrounds (see Fig. 5.1). The backgrounds are neutral current

events and wrong-sign neutrinos. The positive sample consists of at least 50% background

at all energies, and the contamination increases below 7 GeV which is the region of interest

for oscillations analysis.

An additional selection step is applied for each of these backgrounds. Two cuts are
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made to reduce the wrong-sign background, and a third cut is made to reduce the NC

background. The two charge-sign selection variables are the ratio of the track’s curvature

( q
p
) to the uncertainty on that curvature (σ

(
q
p

)
), and the relative angle between the straight-

line projections of the first few hits and the last few hits of the track. The distributions of

these two variables are shown in Fig. 5.2. The CC/NC separation parameter, called DpID,

is built up from the following 1-dimensional PDFs of three variables that each have some

power to distinguish charged current events from neutral currents:

• Track length: True muon tracks tend to be longer (e.g. cross more planes) than the

tracks of particles coming out of the hadronic shower.

• Track energy fraction: The fraction of the event energy contained in the track (lepton)

as compared to the hadrons (shower). It is related to the kinematic y (inelasticity)

distribution.

• Track energy per plane: The amount of energy deposited per plane of the track. It is
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Figure 5.1: Contamination in the positive sample after preselection. The black line represents
the total contamination (1-purity), the red line represents the fraction of events that are
mis-identified νµCC (wrong sign) and the blue line represents the fraction of events that are
neutral currents.
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Figure 5.2: Charge-sign selection variables
q
p

σ( qp)
and RelativeAngle are shown for the ND in

data (black points) and simulation (total in red, background in blue). The total systematic
uncertainty on the Monte Carlo is represented by the shaded red bars. In each plot, all other
selection cuts have been applied.

related to dE/dx which can distinguish true muons (typically minimum-ionising) from

the tracks formed by hadronic shower components.

These three variables for the ND data and simulation are shown in Fig. 5.3. The distribution

of the separation parameter for the ND data is shown in Fig. 5.4. In addition to removing

neutral current events, DpID is also effective at removing many wrong-sign events because

one of its input PDFs is related to inelasticity (kinematic y) and neutrino interactions typi-

cally have a higher y than antineutrinos. Fig. 5.5 shows the performance of the antineutrino

selection in purity and total (reconstruction and selection) efficiency as well as the purity

in the positive sample before selection (as shown in Fig. 5.1). The three selection cuts on

charge-sign and the CC/NC separator improve the purity of the sample from 34% to 99%

while keeping the overall efficiency at 85% in the ND.

5.2 Near Detector Spectrum

The energy spectrum at the Near and Far Detectors can be built up by combining the

track and shower energy for each event. The distributions for track and shower energies for

the ND are shown in Fig 5.6. The selected antineutrino energy spectrum at the ND in the
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Figure 5.3: The three variables that form the PDFs in the DpID CC/NC separator: the
track length, the fraction of the event energy in the track, and the mean energy deposited per
plane are shown for the ND in data (black points) and simulation (total in red, background
in cyan). The flux uncertainty on the Monte Carlo is represented by the shaded red bars
and the background systematic uncertainty is represented by the shaded blue bars.

FHC beam can be seen in Fig. 5.7. The data and Monte Carlo are shown along with the

systematic uncertainty in the Monte Carlo. Background is also shown in blue.

The simulation shown in Fig. 5.7 is not the raw Monte Carlo – it has been reweighted as

a function of the neutrino parent’s initial momentum (pT, pZ) leaving the target to account

for the mismodelling of hadronic interactions in the NuMI target. The NuMI beam has the

flexibility to allow data collection in multiple beam configurations (see Fig. 3.6). By simu-

lating the flux in various beam configurations and performing a fit to all the configurations

simultaneously, the flux prediction was tuned to achieve good agreement with the observed

ND data. The fit constrains the π+/π− ratio by using both simulated results from FLUKA05

and experimental results from the NA49 experiment [134]. The separate runs are also fitted

simultaneously. The best fit is used to determine weights for the pions and kaons which are
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Figure 5.4: CC/NC separation parameter (DpID) is shown for the ND in data (black points)
and total Monte Carlo with flux uncertainty (red line and shaded bars). Also shown is the
total background in blue. The CC/NC separator has some power to reject the wrong-sign
background due to the higher average inelasticity (y) of neutrinos compared to antineutrinos.
All other cuts have been applied.
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Figure 5.5: This figure shows the contamination in the sample of events with positive recon-
structed charge. The dashed and solid lines respectively show the contamination before and
after the selection cuts. NC background is in blue and wrong-sign background is in red.
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Figure 5.6: The track energy (left) and shower energy (right) distributions shown for the ND;
data as black points and simulation (total in red, background in blue). The total systematic
uncertainty on the Monte Carlo is represented by the shaded red bars.
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Figure 5.7: The selected νµ energy spectrum is shown for the ND; data is shown as black
points, background as blue and tuned MC in red. The total systematic uncertainty on the
Monte Carlo is represented by the shaded red bars.

propagated to the Near and Far Detectors.

The hadron production is parametrised following the BMPT parametrisation, [135],

d2N

dxFdpT
= [A+BpT ] · exp

(
−C3/2pT

)
(5.5)
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where pT is the transverse momentum of the meson and xF = pZ/pproton is the ratio of its

longitudinal momentum to the momentum of the proton. The pT distribution is fitted for

different bins of pZ and the parameters A, B and C are allowed to vary in the fit and become

functions of xF. The reweighting is determined by fitting a paramaterised warping of the

hadron production to the neutrino and antineutrino spectra in the ND. For π+, A, B, and

C are redefined as,

A′(xF ) = (par[0] + par[1] · xF ) · A(xF )

B′(xF ) = (par[2] + par[3] · xF ) ·B(xF )

C ′(xF ) = (par[4] + par[5] · xF ) · C(xF ) (5.6)

and similarly for K+ with parameters par[6] - par[11]. The weight for a positive meson is

calculated as,

W (π+/K+, pT , pZ) =
[A′ +B′pT ] · exp

(
−C ′3/2pT

)
[A+BpT ] · exp (−C3/2pT )

(5.7)

and that for negative mesons as,

W (π−, pT , pz) = (par[12] + par[13]xF )W (π+, pT , pZ)

W (K−, pT , pz) = (par[14] + par[15]xF )W (K+, pT , pZ) (5.8)

Thus there are sixteen hadron production fit parameters. Besides these, there are eight

additional parameters in the fit to account for uncertainties in the flux measured by the ND,

such as focusing, detector effects and target degradation. Fig. 5.8 shows the ND data and

Monte Carlo with and without this tuning. The tuned Monte Carlo is clearly a much better fit

to the data which makes this and all other ND data-MC comparison plots easier to interpret.

However, because of the cancellation of uncertainties in the flux when extrapolating, the

beam reweighting does not affect the final result much. To study the effect of the reweighting,

cross-check studies were performed. It was found that the FD prediction changes by at most
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a few percent at all energies, and even less at the lower energies relevant to oscillations.
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Figure 5.8: The selected νµ energy spectrum is shown for the ND; data (black points),
untuned simulation (blue line), and simulation with tuned hadron production (red line).
The ratios of the data to the two simulations are shown below this figure.

Fig. 5.9 shows the X and Y distributions of track vertices, along with the radius squared

and Z distributions for the track vertices. The Monte Carlo is seen to model the data well.

5.3 Extrapolation (the Beam Matrix)

The two detector design of the MINOS experiment allows for reduction in the effect of

a large number of systematic uncertainties. The systematics which affect both the detectors

in the same way, such as the neutrino flux, the neutrino cross-section, and the modelling of

the hadronic energy, cancel out to a large extent. But this cancellation would be exact only

if the flux is same at both the Near and Far Detectors. For MINOS this is not true due to

the decay kinematics of the parent particles that produce the neutrinos. The energy of the

daughter neutrino for a given parent is given by:

E∗ν =
m2
p −m2

µ

2mp

(5.9)
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Figure 5.9: Top plots show the track vertex in X direction (left) and in Y direction (right) in
meters. Bottom plots show the radius squared distribution of track vertex (left) and track
vertex in Z direction (right) in units of number of planes. Black dots represent the ND data
and the red curve represents Monte Carlo. The Monte Carlo is area normalised to data to
compare the shapes of the distributions independent of normalisation.

where mp is the mass of the parent (p = π±, K±), mµ is the mass of the muon and the

neutrino mass is negligible. Thus the energy of the daughter neutrino in the parent’s rest

frame is fixed. However, in the lab frame the energy of the neutrino is given by:

Eν =
E∗ν

γp (1− βp cos θ)
(5.10)

where γp is the parent’s Lorentz factor and βp is its velocity. Therefore the neutrino energy in

the lab frame depends on the relative angle, θ, between the direction of travel of the parent

and the neutrino.

The flux is also a function of angle. In the parent’s rest frame the neutrinos are emitted
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isotropically, whereas, in the lab frame the flux becomes angle dependent:

dN

d cos θ
=

1

2γ2
p (1− βp cos θ)2 (5.11)

where again γp is the parent’s Lorentz factor and βp is its velocity.

Since the FD is 735 km away, for a given parent, a neutrino produced at only a very

small range of angles w.r.t the initial beam direction will reach the FD. So we can assume

that θ is unique for the neutrinos reaching the FD. Therefore, the energy of the neutrino

at the FD will be uniquely determined by the parent energy. However the ND covers a

wide solid angle since it is close to the decay pipe. Therefore the same parent can produce

neutrinos at a large range of energies in the ND (Fig. 5.10). Consequently the spectrum at

the ND and FD are slightly different as can be seen in Fig. 5.11. The parents responsible for

producing neutrinos in the coloured areas in the ND bins produce a different neutrino energy

distribution in the FD bins with the corresponding colours. This effect is more pronounced

for parents with higher energy which travel further down the decay pipe before decaying.

This enhances the solid-angle effect and allows a wider range of contributing decay angles at

the ND (this outweighs the increased Lorentz boost whose effect is to narrow the outgoing

neutrino energy distribution). Thus the neutrino energy at the ND is lower as compared to

that at the FD, shifting the neutrino events at the ND downward into the peak. The net

effect is that the ND spectrum is more peaked as compared to the FD spectrum.

θf

To far
detector

Decay Pipe

!
+

!
+
(soft)

(stiff)

θn

Target

ND

Figure 1: A diagram of neutrino parents in the NuMI decay pipe, illustrating
the different solid angles subtended by the near and far detectors at the parent
decay point. (Figure taken from [10].)

Figure 2: Simulated true neutrino energy spectra in the near (left) and far
(right) detectors. Parents responsible for producing neutrinos in the hatched
near detector energy bins produce a different neutrino energy distribution
in the far detector, shown by the corresponding hatching. (Figure taken
from [4].)

Figure 2 illustrates the effect of parent decay kinematics on the near and
far detector energy spectra. It highlights how parents responsible for certain
near detector neutrino energies produce a different far detector neutrino en-
ergy distribution. The effect is most pronounced for higher energy parents
(and therefore higher energy neutrinos) which typically travel further along
the decay pipe before decaying: the neutrinos are then produced closer to
the near detector, allowing a wider range of contributing decay angles. (This
effect outweighs the increased Lorentz boost of the higher energy parents,
which narrows the range of decay angles in the laboratory frame.) The effect
primarily lowers the typical energy of a neutrino at the near detector in com-
parison to the far as the parents are travelling predominantly towards the far

5

Figure 5.10: Diagram of the neutrino parents in the NuMI decay pipe. A parent will typically
have a wide range of neutrino decay angles that reach the Near Detector and a very narrow
range that will reach the Far Detector.

To predict the FD spectrum, given the ND spectrum, a method called “beam matrix”
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Figure 5.11: Simulated true neutrino energy spectra in the near (left) and and far (right)
detectors. The coloured regions on the left and right spectra show the neutrino energy
distributions coming from the same neutrino parents.

extrapolation is adapted for antineutrinos is used [136]. The Monte Carlo is used to create

a matrix, called the “beam matrix”, that relates the ND energy spectrum to that at the

FD. The rows of the beam matrix correspond to a bin of FD true neutrino energy and the

columns each correspond to a bin of ND true neutrino energy. Simulated neutrino parents

are allowed to decay in the ND and FD, at randomly selected interaction vertices. The

neutrino energy and the probabilities of those decay directions are then determined by the

decay kinematics. The neutrino energy at the ND can then be associated with that at the

FD via the shared parent. We get the complete beam matrix by repeating the procedure for

all the simulated parents. This procedure is carried out for each run period separately to

take into account differences in the beam properties, and also independently for neutrinos

and antineutrinos to account for the different parent particles. Since the matrix is nearly

diagonal it shows that there is a strong correlation between neutrino energies at the Near and

Far Detectors, but each near detector energy corresponds to a distribution of far detector

energies. The matrix for antineutrinos in the FHC beam can be seen in 5.12

Since this matrix is based on simulation it assumes that the Near and Far Detector

spectra are in true energy and are perfectly pure. Moreover, it assumes that the events
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Figure 5.12: The beam matrix for νµ’s in the FHC beam. Each cell relates a FD energy bin
to a ND one. The content of each cell represents the mean number of νµ events expected
in the FD for one event in the ND. This distribution is treated as a matrix to relate the
energies measured in the ND to those expected in the FD.

are selected perfectly. But in reality, the selection efficiency is not perfect, and there is

background contamination. Also, the beam matrix transforms the ND flux in true energy

to the FD flux. But the Near and Far Detectors do not directly measure neutrino flux,

but a visible energy distribution. Therefore, additional steps are required to complete the

extrapolation procedure. Additional matrices, derived from Monte Carlo simulations, are

used to remove neutral-current contamination from the observed near detector spectrum.

The observed reconstructed spectrum at the ND is converted to true energy, and corrected

for purity, reconstruction efficiency, and selection efficiency to get the ND flux. The ND

flux is extrapolated to the FD by using the beam matrix. The equivalent matrices are

then applied at the FD in reverse to generate the FD prediction in reconstructed energy.

The flowchart in Fig. 5.13 illustrates the procedure for neutrino analysis. The procedure

is adapted for antineutrino analysis, shown in Fig. 5.14, where the νµ and νµ spectra are

separated. The νµ background in the νµ event selection is oscillated according to the νµ

oscillation parameters. Similarly, the νµ background in the νµ event selection is oscillated

100



5.3. EXTRAPOLATION (THE BEAM MATRIX)

ND data
(reconstructed

energy)

Purity
correction

Reconstructed
to true
energy

conversion

Efficiency
correction

Cross-
sections

and
fiducial mass

ND flux
(true energy)

Beam Matrix

FD flux
(true energy)

Cross-
sections

and
fiducial mass

Efficiency
correction

Oscillate

True to
reconstructed

energy
conversion

Purity
correction

FD prediction
(reconstructed

energy)

Figure 5.13: Flowchart showing the steps involved in the extrapolation of a Near Detector
energy spectrum to a Far Detector prediction.

according to the νµ oscillation parameters in order to make their correct prediction. The νµ

and νµ spectra are extrapolated individually, and the νµ prediction is used to calculate the

CC background to the FD νµ spectrum, and vice-versa. The FD prediction can be produced

for any choice of oscillation parameters by applying the oscillation probability to the true

FD flux times cross-section before applying the other corrections.

We can confirm that the extrapolation is behaving as expected by making a FD prediction

using ND Monte Carlo, with the oscillation parameters set to zero. If everything is working

properly, this should produce a FD spectrum that is nearly identical to the unoscillated FD

Monte Carlo. But we should not expect the two to be exactly identical since the ND and

FD Monte Carlo are statistically independent. The ratio of the FD Monte Carlo to the FD

prediction using the ND Monte Carlo can be seen in Fig. 5.15, and the fluctuation is seen

to be ∼3% level at all energies. Since the fluctuations are smaller than the FD data, so the

agreement is considered to be sufficient to the analysis.
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Figure 5.14: Beam matrix extrapolation procedure for antineutrinos, starting from the Far
Detector flux calculated using Fig. 5.13. Figure from [136].

Figure 5.15: Left: the raw FD Monte Carlo (black) and the prediction obtained by applying
beam matrix extrapolation to the ND Monte Carlo (red) for the CC νµspectra. Right: the
corresponding ratios of the prediction divided by the FD Monte Carlo.

5.4 Far Detector Data

The FD data sample is selected using the same selection variables optimised for the ND

data. In addition, in order to remove the contamination from cosmic muons, tracks are

required to have at most an angle θ with the beam axis such that cos θ < 0.6. The overall
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efficiency of this selector at the FD is shown in Fig. 5.16. The analysis is done as a blind

analysis, which means that we don’t look at the FD data until the entire analysis chain is

finalised. It is still necessary to check that the data are well modelled by the Monte Carlo

simulation. To do this we look at the FD distribution of variables that are insensitive to

oscillations, such as spatial distributions. The overall normalisation of the event count is

hidden. In order to study the oscillation-sensitive distributions, such as energy spectra, a

blinding algorithm is applied to the data which removes a subset of the events from the

dataset in a way that will mask the effect of oscillations. After the analysis is finalised the

data is unblinded and the proper normalised versions of these comparisons are performed

with the full dataset. Fig. 5.17, 5.18, and 5.19 show the data/MC comparison of the CC/NC
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Figure 5.16: Efficiency and Purity at the FD before and after selection cuts.

separation variable, the charge sign selections at the far detector. Fig. 5.20 and 5.21 show

the spatial distributions of track vertices and ends in the detector. The simulation with

no-oscillations is shown in black, that with the same oscillations as neutrinos is shown in

blue, and the data points are shown in black. All these distributions show that the data is

very well modelled by simulation.
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Figure 5.17: CC/NC separation parameter (DpID) is shown for the FD; data (black points),
oscillated simulation (solid red line) and unoscillated simulation (dashed red line). All other
selection cuts have been applied.
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Figure 5.18: Charge-sign selection variable
q
p

σ( qp)
is shown for the FD; data (black points),

oscillated simulation (solid red line) and unoscillated simulation (dashed red line). All other
selection cuts have been applied.

5.5 Systematics

A number of systematic uncertainties which can affect the oscillation measurements [137]

are described below.
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Figure 5.19: Charge-sign selection variable —RelativeAngle-π— is shown for the FD; data
(black points), oscillated simulation (solid red line) and unoscillated simulation (dashed red
line). All other selection cuts have been applied.
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Figure 5.20: Selected antineutrino event vertex (left) and end (right) positions for the FD
as a function of x-coordinates.

5.5.1 Track Energy Scale

There is a systematic uncertainty of 2% on muon track energy from range. It is measured

using the calibration detector. The uncertainty on the track energy from curvature is 4%.

It is determined by comparing range and curvature momentum measurements for stopping

tracks. These uncertainties are taken as fully correlated between the Near and Far Detectors.
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Figure 5.21: Selected antineutrino event vertex (left) and end (right) positions in the FD as
a function of y-coordinates.

5.5.2 Shower Energy Scale

It has two components: uncertainty in the relative shower energy scale and absolute

shower energy scale. The relative shower energy systematics come from uncertainties in

the energy calibration at the near (1.9%) and far (1.1%) detectors and are uncorrelated

between the detectors. The absolute shower energy systematic uncertainty is taken as fully

correlated between the two detectors and has two major components. The first component

stems from uncertainties in the detector response to single hadrons as measured in the

calibration detector at CERN test beam and is 5.7% at all energies. The second component

is energy-dependent and encapsulates uncertainties in hadron production and intranuclear

effects. It is 8.2% at the lowest energies and decreases to 3% above 10 GeV. The final

systematic has the energy-dependent form

σshw = 6.6% + (3.5%)× e
−Eshw

1.44 GeV (5.12)

which is taken as fully correlated between the two detectors.
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5.5.3 Backgrounds

The uncertainty in the NC background is primarily due to mis-modelling of hadronic

showers and neutral-current cross sections in the Monte Carlo. Misidentified νµ CC events

also make up a significant component in the selected νµ CC dataset. It is due to the mis-

identification of the charge of the muons forming the muon track. The systematic uncertainty

on these backgrounds is quantified by studying the subsets of data and Monte Carlo in the

ND where the number of misidentified events has been enhanced by selecting events with

0 < DpID < 0.25. The data and Monte Carlo in the enriched region are compared, and

any discrepancy in the oscillation region is attributed to the wrong-sign background. The

maximum size of this discrepancy is taken as the uncertainty on this background. This gives

a systematic uncertainty of 50% on the NC and wrong sign CC backgrounds.

5.5.4 Near to Far Normalisation

The normalisation systematic is 4% for νµ sample. It incorporates several systematic

uncertainties, all of which change the relative number of events expected at the two de-

tectors per POT. The 4% systematic for the νµ sample is dominated by a 3% uncertainty

on the difference in reconstruction and selection efficiency in the two detectors. Table 5.1

below shows all the contributions. The ‘fiducial bias’ uncertainties refer to data-simulation

differences in the non-uniformity of the vertex distributions coming from acceptance effects

due to the geometry of the ND.

5.5.5 Cross-sections

Several systematic effects are evaluated as part of the cross-section systematic, both on

the overall cross-section and on various NEUGEN [129] interaction model parameters. Some

affect both neutrinos and antineutrinos and others are specific to antineutrinos. While the

majority of the cross-section uncertainties cancels between the two detectors, some residual

systematic effect remains because of the spectral differences between the detectors.
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Systematic Uncertainty
Steel Thickness 0.2%

Scintillator Thickness 0.2%
FD Live Time 1.0%

ND Fiducial Bias (z) 1.9%
ND Fiducial Bias (y) 0.7%
ND Fiducial Bias (x) 0.7%
N/F Selection Bias 3.0%

Table 5.1: Components of the near-to-far normalisation systematic uncertainty. Table
from [138]

5.5.6 Flux Modelling

The flux modelling uncertainty arises from a number of sources of errors, including hadron

production, beam optics (horn positions, currents, etc.), the position of the target, the shape

and the amount of material in the horns and the beamline. The flux errors are evaluated by

changing the fit parameters in the beam tuning fit within their uncertainties and observing

the effect on the flux. The majority of the flux modelling errors cancel between the two

detectors, but some uncertainty still remains because the two detectors do not see identical

fluxes. However it has very little impact on the final oscillation analysis.

5.5.7 Downstream Events

Downstream production, or decay pipe production, refers to the antineutrinos that come

from the decay of hadrons coming from the protons interacting outside the target. The

interaction of protons outside the target is primarily in the decay pipe walls, but a smaller

component also comes from the interaction in the concrete surrounding the decay pipe or

the helium in the decay pipe. The parents produced in the downstream region give rise to

11% of the ND νµ events and 7% of the FD νµ events. The uncertainty on this systematic

is significant for the antineutrino analysis because it does not produce the same spectrum

in the Near and Far Detectors, so errors in production cross-sections do not cancel between

the two detectors. In order to constrain the uncertainty on this systematic the ND data is
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used. The ND Monte Carlo is first reweighted using a special set of beam weights, called

SKZP weights, obtained from beam fits. Then the decay pipe component is scaled up or

down in order to make the total number of Monte Carlo events less than 20 GeV match the

data. Using this method a ‘worst case’ uncertainty of ±100% is obtained on the number of

neutrinos coming from interactions outside of the target.

5.5.8 Effect on the Analyses

The effect of each systematic uncertainty on the oscillation results is estimated using

the Monte Carlo. Systematic shifts are applied to high statistics ND and FD Monte Carlo

spectra to obtain shifted spectra. Positive as well as negative values of the shifts are applied,

producing two sets of spectra. The shifted ND spectra are used to make shifted FD prediction

for each systematic. The ratio of the shifted spectrum to the unshifted spectrum gives us

the size of the uncertainty of a systematic. The systematic error band is constructed by

calculating the quantity

1− Shifted FD Prediction/Shifted FD MC

Nominal FD Prediction/Nominal FD MC
(5.13)

for each systematic. Positive values of this quantity are added in quadrature in each energy

bin to obtain the upper band, and negative values are added to obtain the lower band.

Fig. 5.22 shows the FD systematic error band constructed from all systematic uncertainties

summed in quadrature. This error band is not used in the fit but is used in the plots

comparing our prediction and data to show the systematic uncertainty on the FD prediction.

5.6 Oscillation Analysis

The oscillation parameters are measured using a two-parameter fit for ∆m2
32 and sin2 2θ23

from Eq.5.1. The oscillation parameters are varied within a certain range and a FD predic-

tion is made for each value of the parameter. The fit finds the oscillation parameters that
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Figure 5.22: FD systematic error band constructed from all systematic uncertainties summed
in quadratue.

maximise the likelihood or minimise the −2 lnL of the data given the prediction at those

oscillation parameters:

−2 lnL(W) = 2
∑
i

[
pi(W)− di + di ln

di
pi(W)

]
(5.14)

where W = (∆m2
32, sin

2 2θ23) contains the fit parameters, i is the energy bin, di is the

number of data events in bin i, and pi(W) is the predicted number of events in bin i given

the parameters in W. The prediction, pi, is generated based on the ND data as described

in Section 5.3. The oscillation formula (5.1) is applied to the predicted spectrum in true

energy before it is transformed into reconstructed energy for comparison with the data.

Once a likelihood surface has been produced, the contours are drawn using the Feldman-

Cousins method [139, 140]. Using this method helps address three difficulties [128]. First,

the effects being studied exist near physical boundaries where gaussian confidence intervals

cover more than the expected fraction of experiments for a given confidence level. The
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boundaries exist at sin2 2θ23 = 0, 1 and ∆m2
atm = 0. Second, when the statistics in the

spectrum are low, the oscillation formula has a degeneracy between oscillations with a high

∆m2
atm and sin2 2θ23 ≈ 1, and a low ∆m2

atm with sin2 2θ23 = 0.5. This degeneracy creates

the opposite effect as the physical boundary: the gaussian confidence intervals do not cover

enough experiments. Third, the Feldman-Cousins method allows us to introduce the effects

of systematics into our confidence intervals and contours.

Fig. 5.23 shows the FD data spectrum along with the prediction based on ND data

without oscillations, with the same oscillation parameters as the neutrino, and for the back-

ground. A total of 130 events are observed with an unoscillated expectation of 150 and an

oscillated expectation of 136 events assuming the same oscillation parameters as measured

for neutrinos in [141].
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The allowed oscillation contours are shown in Fig. 5.24. The best fit is at a relatively

high mass splitting since the spectral deficit is at high energy, and even higher mass splitting

cannot be excluded. Much of the power of the analysis comes from counting events, rather

than shape information, due to its low statistics. Consequently, the results cannot distinguish

the best fit point with a moderate mixing angle from fast oscillations with a large mixing

angle. Significant power can be gained by assuming maximal mixing and looking in only

the mass splitting parameter. The one-dimensional exclusion curve is shown on the right in

Fig. 5.24. We exclude ∆m2 > 4.49× 10−3 eV2 at a 3σ significance. This data helps provide

additional bounds on the value of ∆m2 in addition to the constraints provided by the analysis

of antineutrino data obtained in a dedicated antineutrino running [142]. For comparison we

also show the 90% confidence level contour for the MINOS neutrino oscillation parameters,

from [141].
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Chapter 6

Neutrino to Antineutrino Oscillations

As discussed in Chapter 2, the violation of Lorentz and CPT symmetries, described by SME,

can lead to mixing between neutrinos and antineutrinos. The violation of these symmetries

is expected to be very small since these are suppressed by the Planck scale. But the interfer-

ometric nature of neutrino oscillations enhances the effect of these violations large enough to

be observed in a long-baseline experiment. The MINOS experiment has the unique ability

to test these oscillations because it is a magnetised detector (Section 3.4) and, therefore,

can distinguish between neutrinos and antineutrinos by charge-sign identification of muons

resulting from their charged-current interactions, (Section 4.2.1). Considering a subset of

SME coefficients which cause time-independent oscillations the oscillation probabilities were

derived in Chapter 2. They are:

Survival probability of νµ:

P (νµ → νµ) = 1−
(

sin2(θC-odd − θC-even) +
1

4
[sin(2θC-odd) + sin(2θC-even)]2

)
sin2

(
∆m2L

4E

)
(6.1)
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Oscillation probability νµ to νµ:

P (νµ → νµ) =
(

sin2(θC-odd − θC-even)− 1

4
[sin(2θC-odd)− sin(2θC-even)]2

)
sin2

(
∆m2L

4E

)
(6.2)

Oscillation probability νµ to ντ :

P (νµ → ντ ) =
(1

4
[sin(2θC-odd) + sin(2θC-even)]2

)
sin2

(
∆m2L

4E

)
(6.3)

Oscillation probability νµ to ντ :

P (νµ → ντ ) =
(1

4
[sin(2θC-odd)− sin(2θC-even)]2

)
sin2

(
∆m2L

4E

)
(6.4)

where L is the distance travelled by the neutrinos and E is their energy. Angles θC-odd and

θC-even are the effective mixing angles for states that are odd and even, respectively, under

charge conjugation operator C in flavour space. They are related to ∆m2, sin2 2θ, and the

SME coefficients through the following relations:

tan 2θC-odd =
∆m2 sin 2θ(

(1.6(g̃ZTµµ − g̃ZTττ ) + 2.7((cL)TTµµ − (cL)TTττ ))E2 + ∆m2 cos 2θ
) , (6.5)

and

tan 2θC-even =
∆m2 sin 2θ(

(−1.6(g̃ZTµµ − g̃ZTττ ) + 2.7((cL)TTµµ − (cL)TTττ ))E2 + ∆m2 cos 2θ
) . (6.6)

The aim of the analysis is to fit the data to the current model and thereby constrain the

parameters g̃ZTµµ , g̃ZTττ , (cL)TTµµ , and (cL)TTττ that define the model.

The present analysis uses all the data obtained in a 10.56× 1020 PoT exposure obtained

by MINOS in the FHC Low Energy running where the beam is composed of 91.7% muon
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neutrinos and 7% muon antineutrinos. Besides this there is also a small fraction of elec-

tron neutrinos and antineutrinos which are not considered for this analysis. We are able to

place limits on the g̃-type and c-type parameters by fitting the neutrino and antineutrino

spectra simultaneously using a binned log-likelihood. The g̃-type coefficients are responsi-

ble for the mixing between muon neutrinos and muon antineutrinos. These oscillations are

energy dependent and would be seen as an excess of νµ events at the FD as compared to

that predicted from the standard oscillations. The energy at which the excess is expected

decreases when the value of these parameters is increased (Section 2.4). The c-type coef-

ficients do not allow mixing between neutrinos and antineutrinos. They only change the

mixing between neutrino states or between antineutrino states as compared to the standard

two-flavour oscillation model. Therefore a deviation in the observed FD spectra as compared

to the prediction from the SM could be due to non-zero c-type coeffcients. As is evident from

equations 6.5 and 6.6 the parameters g̃ZTµµ and g̃ZTττ are degenerate as also are the parameters

(cL)TTµµ and (cL)TTττ . So we can perform a fit to the combination of parameters |g̃ZTµµ − g̃ZTττ |,

((cL)TTµµ − (cL)TTττ ), while marginalising over ∆m2 and sin2 2θ. Limits on individual SME co-

efficients can also be obtained by setting all other SME coefficients to zero, and performing

a fit to that coefficient, marginalised over ∆m2 and sin2 2θ.

This chapter describes the selection procedure for neutrino and antineutrino events at

the ND and the method to predict a FD spectrum. Then the details of the fitting frame-

work and the systematic uncertainties that can affect the measurement of the individual

SME parameters is given. For simplicity the framework is tested assuming that only g̃ZTµµ

coefficients are non-zero. The effect of the c-type parameters on the FD spectra is discussed

later. Finally the results obtained by fit to the data are presented in two ways:

1) The fit is performed to the individual SME parameters, marginalised over ∆m2 and sin2 2θ,

assuming all other parameters to be zero. This will provide limits to the individual SME

parameters.

2) The fit is performed to |g̃ZTµµ − g̃ZTττ | and ((cL)TTµµ − (cL)TTττ ), marginalised over ∆m2 and

116



6.1. EVENT SELECTION

sin2 2θ to show the parameter space constrained by the model.

6.1 Event Selection

We used νµ as well as νµ for this analysis. The event selection was kept unchanged from

that used for the previous MINOS charged-current analyses [97, 143, 144], and is discussed

below.

6.1.1 The Antineutrino Dataset

It has been previously discussed in Section 5.1 that we use charged-current interactions to

identify antineutrino events. Positively charged muon is formed in the following interaction

νµ +N → µ+ + hadrons, (6.7)

and is defocused in the detector because of the magnetic field. More details can be found

in Section 5.1. The energy spectrum for the ND in this case is obtained using all muon

antineutrino data obtained in 10.56×1020 PoT exposure. The size of systematic uncertainty

is reduced as compared to the previous analysis because of the reduction in size of one of the

largest systematics, the decay pipe systematic. This will be discussed later in Section 6.6.

6.1.2 The Neutrino Dataset

We again use charged-current interactions to identify neutrino events. The lepton formed

in this case is a negatively charged muon,Eq. 6.8, which is focused by the detector’s magnetic

field.

νµ +N → µ− + hadrons (6.8)

The presence of a track is the basic requirement for identifying neutrino events. The track is

long for neutrinos with high energy, and may be short for events with low neutrino energy.

But not all events with a reconstructed track are due to charged-current interactions. For
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example, sometimes a hadronic shower in a neutral-current interaction may be reconstructed

as a track. The PID algorithm in MINOS is developed to identify muon tracks and reduce

the background as much as possible.

The basic preselection applied is the same as that described in Section 5.1.1. The four in-

put variables that separate neutral-current and charged-current events are shown in Fig. 6.1.

They are:

• Number of scintillator planes - The tracks formed by muons in the detector are long

and smooth as compared to hadronic particles, which interact more strongly in the

detector and form a shorter track.

• Mean energy deposited per strip - The charge deposited by muons in the detector is

almost constant (one MIP) in each plane. On the other hand hadronic showers give

a higher mean energy deposition. The first 30% of planes after the track vertex are

excluded when calculating the mean.

• Signal fluctuation parameter - Tracks formed due to hadronic activity have larger

fluctuations in energy deposition as compared to muons. All hits within four scintillator

strips of the reconstructed track, after the first 30% of planes, are sorted by pulse height.

The variable is defined as the mean of the lowest pulse-height strips divided by the

mean of the highest pulse-height strips. A larger value of the parameter indicates more

uniform energy deposition.

• Transverse profile parameter - Energy deposited by muon tracks is typically confined to

one strip per plane, while hadronic showers are wider. The transverse profile parameter

is defined as the fraction of energy deposited within a 4 strip window assigned to the

reconstructed track. This is calculated by excluding 50% of track planes closest to the

vertex.

The above four variables are combined using a k-Nearest-Neighbours (kNN) technique.

Monte Carlo is used to form a training sample of events, and for each event to be clas-

118



6.1. EVENT SELECTION

 Signal fluctuation parameter 

0 0.2 0.4 0.6 0.8 1

 P
o

T
1
6

E
v
e

n
ts

 /
 1

0

0

5

10

15

20
Low Energy Beam

Data

MC expectation

NC background

Mean energy deposited per strip (MIPs)

0 0.5 1 1.5 2 2.5

 P
o

T
1
6

E
v
e

n
ts

 /
 1

0

0

5

10

15
Low Energy Beam

Data

MC expectation

NC background

Muon scintillator planes

0 50 100

 P
o

T
1
6

E
v
e

n
ts

 /
 1

0

0

2

4

6

8
Low Energy Beam

Data

MC expectation

NC background

 Transverse profile parameter 

0 0.2 0.4 0.6 0.8 1

 P
o

T
1
6

E
v
e

n
ts

 /
 1

0

0

5

10

15

20
Low Energy Beam

Data

MC expectation

NC background

Figure 6.1: Distributions of the four variables used as input to the primary CC selection.
Monte Carlo prediction is shown in red, with the shaded portion showing the systematic
error associated with the beam flux. The expected neutral-current distribution is shown in
blue. The black points show the distributions in the ND data. The data and Monte Carlo
show good agreement.

sified the k (k is 80 in this case) nearest training events in the parameter space are found.

The output of the PID algorithm is then simply the fraction of these events that were due

to νµ-CC interaction. The distribution of the kNN output (R) is shown in Fig. 6.2.

An additional PID was developed to improve selection at low energies (0-5 GeV). The

detailed description can be found in [145, 146]. The input variables are:

• Number of muon scintillator planes - Same as defined earlier for the variable R.

• End Pulse Height - The energy deposition at the end of the track may be quite large

for a track from a hadronic interaction compared to a muon track. This variable is

defined as the total energy deposit in the last five planes of the track.

119



6.1. EVENT SELECTION

 CC/NC separation parameter 

0 0.2 0.4 0.6 0.8 1

 P
o

T
1

6
E

v
e

n
ts

 /
 1

0

210

110

1

10

Low Energy Beam

Data

MC expectation

NC background

Figure 6.2: Output of kNN formed from variables in Fig. 6.1. The data and Monte Carlo
show good agreement.

• Degree of scattering - Hadronic tracks scatter much more and are less straight as

compared to muon tracks. This variable is calculated by combining the Pearson (cor-

relation) coefficients of the track in the U and V views.

The three variables are shown in Fig. 6.3. They are again combined using the kNN technique.

The distribution of the kNN output (J) in this case is shown in Fig. 6.4. The final PID is

constructed so as to select an event that passes either of the two selectors. The cut to be

applied to this PID is optimised to maximise the product of efficiency and purity, ε×p. The

cut position that miximises this product is identified to be:

(R > 0.3) OR (J > 0.5). (6.9)

The selection efficiency and level of contamination achieved by this selector as a function

of reconstructed energy in the FD Monte Carlo is shown in Fig. 6.5. The selector performs

excellent CC/NC separation for energies above 1 GeV.
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Figure 6.3: Distributions of the input variables to the auxiliary CC selection. Conventions
are as given in Fig. 6.1.

6.2 Far Detector Prediction

The beam matrix extrapolation method, described earlier in Sec. 5.3, is used to predict

the unoscillated neutrino and antineutrino flux in true energy at the FD (Fig. 5.13). Both

νµ and νµ events are extrapolated independently. After obtaining the total flux at the FD

the next step is to apply appropriate weights to the antineutrino and neutrino fluxes to

obtain the FD predicted spectra. To obtain FD νµ prediction, first, the cross-section and

fiducial mass corrections are applied to the FD νµ and νµ fluxes. The νµ flux is then weighted

with the oscillation probability P(νµ → νµ), and the νµ flux is weighted with the survival

probability P(νµ → νµ). The spectra are then multiplied with the FD νµ efficiency, and

the spectrum in true energy is converted to reconstructed energy by multiplying with the
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Figure 6.4: Output of the kNN formed from variables in Fig. 6.3. The data and Monte Carlo
show good agreement.
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2-dimensional matrix which transforms between true and reconstructed energy. This gives

the number of νµ events transitioning from νµ events, and the number of νµ events surviving

at the FD, respectively. There is also a small probability of νµ oscillating into ντ and ντ ,

and νµ oscillating to ντ and ντ (Eq. 2.28 and 2.29). The backgrounds for the antineutrino

sample are ντ events, νµ misidentified as νµ (also called ‘wrong-sign’ or WS background),

and NC events. The expected background is also added to the predicted FD spectrum to

obtain the total νµ spectrum expected at the FD. (Fig. 6.6). A similar procedure is used

to obtain the FD νµ prediction (Fig. 6.7). The backgrounds for the neutrino sample are ντ

events, νµ misidentified as νµ, and NC events.
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Figure 6.6: Steps to obtain the FD νµ prediction in reconstructed energy. The backgrounds:
ντ , ’wrong-sign’ νµ’s and NC backgrounds, are also added after applying oscillation weights
appropriately.

Fig. 6.8 shows the FD νµ prediction with different values of g̃ZTµµ , assuming all other

parameters to be zero. A feature of this model is that there is a threshold in energy above

which the Lorentz and CPT violating parameters dominate and the dominant oscillations

change from νµ → ντ to νµ → νµ. The energy threshold varies as
√

∆m2/1.6|g̃ZTαα | GeV.

Therefore as |g̃ZTαα | increases the threshold for νµ → νµ oscillations decreases and we see a
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Figure 6.7: Steps to obtain the FD νµ prediction in reconstructed energy. The backgrounds:
ντ , ’wrong-sign’ νµ’s and NC backgrounds, are also added after applying oscillation weights
appropriately.

peak above the standard oscillations spectrum due to νµ appearance (from νµ oscillating to

νµ). On the other hand, the νµ prediction, shown by Fig. 6.9, does not show such a peak

since the number of νµ events is much less as compared to νµ events. Therefore the small

number of νµ events oscillating to νµ events does not change the νµ spectrum much.

6.3 Generating Simulated Data

Simulated data were used to test whether the extrapolation framework is working cor-

rectly, to calculate the expected sensitivity to the Lorentz and CPT violating parameters,

and to evaluate the effect of systematic uncertainties on the measurements. So that it serves

as a worthwhile cross-check, the simulated FD data is produced in a way significantly differ-

ent from the FD prediction made using the ND data, described in Section 6.2. It is produced

by reweighting the unoscillated spectrum in FD Monte Carlo by the oscillation probability.

True fiducial neutrino and antineutrino fluxes are generated using Monte Carlo. By dividing

the neutrino flux by the antineutrino flux, a set of weights as a function of true energy is
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Figure 6.8: FD νµ prediction with ∆m2 = 2.32×10−3eV 2, sin2 2θ=0.97, and different values
of g̃ZTαα , where α can be µ or τ . As the value of g≡ g̃ZTαα increases, a peak is seen in the FD
predicted spectrum due to lowering of the threshold for transitions.

produced that will transform between them. Then, selected events are looped through. If the

event is an antineutrino, it is first added to the far detector spectrum histograms weighted

by its survival probability, and then the event is added again, this time weighted by the

neutrino-antineutrino flux ratio and the νµ to νµ transition probability,

wν =
fν(E)

fν(E)
P (νµ → νµ), (6.10)

where wν is the weight applied to the antineutrino to make the transitioned antineutrino,

fν/ν are the fluxes, and E is the energy.

If the event is a neutrino, it is first added to the far detector spectrum histograms weighted

by the νµ survival probability, and then the event is added again, this time weighted by the
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Figure 6.9: FD νµ prediction with ∆m2 = 2.32×10−3eV2, sin2 2θ = 0.97, and different values
of g≡ g̃ZTαα .

antineutrino-neutrino flux ratio and the νµ to νµ transition probability,

wν =
fν(E)

fν(E)
P (νµ → νµ), (6.11)

where wν is the weight applied to the neutrino to make the transitioned neutrino. This gives

us the simulated νµ and νµ FD histograms.

6.4 Cross-check of the extrapolation framework

To verify that the extrapolation is performed correctly the simulated FD data and the

FD prediction are compared. The two are expected to be the same for the same values of

oscillation parameters. Four sets of simulated data and predictions were generated with ∆m2

= 2.32× 10−3 eV2, sin2 2θ = 0.97, and different values of g̃ZTµµ : g̃ZTµµ =0, 2× 10−24, 2× 10−23,

and 2× 10−22. The other SME parameters were set to zero for simplicification. The values

126



6.5. FITTING PROCEDURE

of g̃ZTµµ chosen are arbitrary and are intended to check that the framework works well at all

values of SME parameters, ranging from very small to very large. The simulated data and

prediction are found to be in good agreement, shown in Fig. 6.10.
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Figure 6.10: νµ spectra showing agreement between FD prediction and simulated data. The
data and prediction are produced with ∆m2 = 2.32× 10−3eV 2, sin2 2θ = 0.97, and different
values of g≡ g̃ZTµµ .

6.5 Fitting Procedure

A fit to the simulated FD data was done for each case by performing a log-likelihood fit

to the data. The function defined below is minimised to get the best-fit parameters:

−2 log λ = 2
n∑

i= 1

[
Pi −Di +Diln

(
Di

Pi

)]
(6.12)
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where Pi is the expected number of events based on the FD prediction and Di is the number

of events from FD data in bin i. Minuit is used to minimise the above function. The values

of the parameters ∆m2, sin2 2θ, and |g̃ZTµµ | returned by Minuit for each case, and summarised

in Table. 6.1, are very close to the input values. The input ∆m2 and sin2 2θ in each case is

2.32 × 10−3eV2 and 0.97, respectively. Only the magnitude of the parameter g̃ZTµµ is shown

here because we are not sensitive to its sign.

Input Best-fits
g̃ZTµµ ∆m2 × 10−3eV2 sin2 2θ |g̃ZTµµ |
0 2.31± 0.04 0.975± 0.03 7.6× 10−34 ± 3.5× 10−23

2× 10−24 2.31± 0.04 0.975± 0.03 (2.2± 22.1)× 10−24

2× 10−23 2.31± 0.05 0.975± 0.03 (1.9± 0.9)× 10−23

2× 10−22 2.29± 0.01 0.986± 0.06 (1.7± 0.2)× 10−22

Table 6.1: Best-fit values of the parameters ∆m2, sin2 2θ, and |g̃ZTµµ | obtained from the fit to
simulated FD data generated at four different values of g̃ZTµµ .

In order to find our sensitivity to the parameter g̃ZTµµ , a one-dimensional likelihood dis-

tribution is obtained by varying the parameter g̃ZTµµ and calculating the value of the log-

likelihood in Eq. 6.12. The parameters ∆m2 and sin2 2θ are allowed to vary in the fit as free

parameters, using the procedure known as marginalisation. We can construct confidence

levels from the likelihood curve by using the difference of -2logλ at each point compared to

the best fit point ( called -2∆ log λ). The values of -2∆ log λ = 1, 4, and 9 correspond to 1σ,

2σ, and 3σ confidence levels respectively [42]. The top left -2∆ log λ distribution in Fig. 6.11

is drawn using the simulated data generated with g̃ZTµµ =0. Therefore, assuming that there is

no Lorentz and CPT violation, we can constrain the g̃ZTµµ coefficients to < 3.1 × 10−23 at 3

standard deviations (3σ). The top right distribution, drawn with g̃ZTµµ =2×10−24, also shows

a very similar sensitivity because the antineutrino spectrum at this value of g̃ZTµµ is almost

the same as that with g̃ZTµµ =0. For g̃ZTµµ =2×10−23 (bottom left) and 2×10−22 (bottom right)

we can see the curves shifting towards right, where the minimum in the curve corresponds

to the best-fit value. We observe that for smaller values of the parameter g̃ZTµµ the best-fit

point is very close to the input value, whereas for very large value of g̃ZTµµ (=2×10−22) the
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Figure 6.11: One-dimensional -2∆ log λ distribution for the parameter g̃ZTµµ obtained by fitting
simulated data generated at g̃ZTµµ =0, 2 × 10−24, 2 × 10−23, and 2 × 10−22. The dashed lines
show the 1-σ, 2-σ, and3-σ limit. The minimum value of -2∆ log λ corresponds to the value of
g̃ZTµµ at which the simulated data was generated.

best-fit obtained is somewhat away from the input value. This is because for large g̃ZTµµ the

effective mixing angle becomes maximal (see Section 2.4, Fig. 2.2), and the fitter tends to

give a near maximal value of sin2 2θ (=0.986 in Table 6.1) at the cost of reducing the value

of g̃ZTµµ . These curves only show the expected statistical uncertainty on the parameter g̃ZTµµ .

In the next two sections the known systematic uncertainties are discussed and their effect

on the results is presented.

6.6 Systematic Uncertainties

Since this analysis uses both neutrinos and antineutrinos the systematic uncertainties

affecting the neutrino as well as the antineutrino sample were studied. The set of systematic
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uncertainties affecting antineutrinos is the same as described in Section 5.5 with the exception

of the decay-pipe systematic. This is the uncertainty in the production of neutrinos from

the decay of pions produced in the downstream part of the beamline, the major part of

which comes from the interactions with the decay pipe. This systematic uncertainty was

re-evaluated for this analysis. The uncertainties affecting the neutrinos and that due to

downstream events are described below:

6.6.1 Track Energy Scale

The uncertainty on the measurement of muon momentum from range is 2% and that

from curvature is 1%. It is taken to be fully correlated between the two detectors.

6.6.2 Shower Energy Scale

The total relative uncertainty in the ND for νµ sample is 1.85%. The relative uncer-

tainty in the FD is 1.05%. The absolute shower energy uncertainty is energy dependent and

is parametrised as (6.6 + 3.5e−Eshw/1.44GeV )%. The various components in shower energy

estimation have been discussed earlier in Section 5.5

6.6.3 Backgrounds

The uncertainty in the NC background is primarily due to mis-modelling of hadronic

showers and neutral-current cross sections in the Monte Carlo. The wrong-sign background

for the neutrino sample is the νµ events mis-identified as νµ events. The method to quantify

these systematics consists of comparing data and Monte Carlo energy spectra of all prese-

lected events below the PID cut value. In this background-dominated region all data-MC

discrepancy are attributed to the background events. The MC CC and NC samples are

scaled independently to agree with data and the total scale is reported as an estimate of

the uncertainty. The uncertainty on NC background is 11% and that on WS background is

1.5%.
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6.6.4 Normalisation

The sources of the normalisation uncertainty have been discussed earlier in Section 5.5.

For the neutrino sample this uncertainty was determined by performing an extensive manual

scan of real and simulated neutrino CC events in both the detectors. This scan showed no

evidence of an unmodelled difference between the detectors. The statistical precision of this

scan is 1.3% and is taken as the systematic uncertainty in the relative efficiencies between

the Near and Far detectors.

6.6.5 Cross-sections

Several cross sections uncertainties were evaluated as described in [147]. However, these

uncertainties are very small and are also fully correlated between the two detectors. Therefore

they have a very small effect on the final result.

6.6.6 Flux Modelling

This systematic is also evaluated as described in [148]. Since most of the flux uncertainties

affect both detectors in the same way it does not impact the analysis.

6.6.7 Downstream Events

Uncertainty in production of muon antineutrinos from pions produced in the decay pipe

is a non-trivial uncertainty for this analysis since it is very sensitive to small changes to

the expected number of muon antineutrinos. In the previous FHC antineutrino analysis

the decay pipe uncertainty was obtained by attributing the entire Data/MC discrepancy in

the ND to the decay pipe component of the beam. A maximum uncertainty of ±100% was

obtained by this method, which is an overestimate. New constraints on this uncertainty

were obtained by comparing the decay pipe component of the flux obtained with different

physical models from MINOS and MINERνA MC samples [149]. MINOS experiment uses

the FLUGG [122, 123, 124] MC generator for beam simulation. The fraction of the decay
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pipe component using FLUGG was compared with different models, shown in Fig. 6.12.

Fig. 6.13 shows the ratio of this component to FLUGG.
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Figure 6.12: Comparison of the decay pipe component of the antineutrino flux in an FHC
beam obtained with different physical models.
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Figure 6.13: Ratio of the decay pipe component obtained with different models to that
obtained from FLUGG.
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Since the difference between various models and FLUGG is less than 15% below 10 GeV a

maximum uncertainty of 15% was taken as the size of this systematic. This systematic is

significant only for the antineutrino sample, and does not affect the neutrinos.

6.6.8 Effect of Systematic Uncertainties

The effect of systematic uncertainties is calculated by applying ±1-σ systematic shifts to

the simulated data with each systematic uncertainty. This gives two ‘shifted’ datasets cor-

responding to each systematic uncertainty considered. Combined fits to the shifted neutrino

and antineutrino sets are performed and the shifted best fits are compared to the nominal

(using unshifted Monte Carlo) best fit point. Since Lorentz and CPT violating parameters

are expected to be very small the systematic studies were done assuming the value of these

parameters to be zero. The shifted datasets were obtained with ∆m2 = 2.32 × 10−3eV2,

sin2 2θ = 0.97, g̃ZTµµ = g̃ZTττ = (cL)TTµµ = (cL)TTττ = 0. Again, due to the degeneracy be-

tween the parameters, we fit the combination (g̃ZTµµ − g̃ZTττ ) and ((cL)TTµµ − (cL)TTττ ). Table 6.2

shows the shift in the value of SME parameters along with change in minimum likelihood for

each systematically shifted dataset. The shifts from ±1σ shifted datasets have been added

in quadrature to show the maximum possible shift. The significance of each systematic is

quantified by the difference in the -2(log-likelihood) between the best nominal and shifted

MC fits. The last row shows the 1-σ statistical uncertainty. We can see from the table that

the relative normalisation, muon energy scale, and hadronic energy scale are the dominant

sources of systematic uncertainty. In order to take the effect of systematics into account

the largest three systematics are included in the fit. These three systematics are correlated

between neutrinos and antineutrinos. Fig. 6.14 shows the shift in best-fit g̃ZTµµ and the change

in sensitivity obtained by fitting the fake data shifted with ±1σ values of the largest three

systematics. We can see that the systematic uncertainties are much smaller than the statis-

tical uncertainty. Therefore, the results are not expected to be significantly affected due to

systematic uncertainties.
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Uncertainty δg̃ δc ∆(−2logλ)

Hadronic energy 1.8e-27 6.4e-24 2.67
Muon energy 5.1e-27 4.6e-24 2.04
Relative normalization 5.9e-24 7.3e-24 0.60
Beam flux -2.5e-24 2.7e-24 0.12
Cross-sections 1.5e-24 5.3e-24 0.06
Decay pipe uncertainty 9.3e-27 2.4e-24 0.03
NC Contamination 3.0e-32 1.1e-24 0.03
WS Contamination 1.6e-24 1.5e-25 0.01

Statistical Error 1.6e-23 1.6e-23 1.00

Table 6.2: Shifts in the measurements of the parameters g̃ZTµµ or g̃ZTττ , and (cL)TTµµ or
(cL)TTττ between the unshifted and shifted best-fit points for each systematic. Also shown
is the change in the value of -2logλ at best-fit. (Input: ∆m2 = 2.32 × 10−3eV 2, sin2 2θ =
0.97, g̃ ≡ (g̃ZTµµ org̃

ZT
ττ ) = 0, c ≡ ((cL)TTµµ or(cL)TTττ ) = 0) ). The last row shows the size of the

statistical uncertainty.
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Figure 6.14: 1-D log(likelihood) plots showing the effect of the largest three systematics on
g≡ g̃ZTµµ when input g̃ZTµµ =0. All other parameters are marginalised.
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6.7 Including Systematics in Fitting

The fitting framework is similar to the one used in the NSI [150] and Decoherence analy-

ses [151]. The log-likelihood method described earlier (Section 6.4) shows only the statistical

uncertainty on the results. To take into account the effect of systematics on the result we

include the three largest sources of systematic uncertainties in the fit as nuisance parameters.

The systematics are assumed to have a Poisson distribution such that we can add a term

3∑
j= 1

ε2j
σ2
j

to the likelihood function Eq. 6.12, where εj corresponds to the shift from the nominal value

of the jth systematic and σj is the uncertainty of the jth systematic. The energy dependent

systematic effects to be fitted are modelled by applying an energy dependent shift to the

FD prediction based on the ratio of 1σ shifted FD prediction and MC. Small differences

are expected between FD predictions and MC even in the nominal case, therefore these

differences are removed from the systematic error band by taking the ratio of nominal FD

prediction and MC. A weight is defined in each energy bin as:

wi =
MCShifted

i

PredShiftedi

× PredNominali

MCNominal
i

− 1 (6.13)

The distribution of wi is then smoothed to reduce statistical fluctuation due to finite MC

sets and interpolated to obtain a continuous function of weights w(E), which are a function

of reconstructed energy E. The smoothing is done using a LOWESS method [152] in which

a linear fit is performed around each bin and the bin is set to the best-fit value. This helps

us to capture important patterns in the data while leaving out statistical fluctuations. Since

the uncertainties in different run periods are similar, the systematic ratios for the three run

periods are combined to increase the MC statistics. For energy independent systematics, the

function w(E) is known to be constant and no binned distribution is needed. The distribu-
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tions of w(E) for the absolute hadronic and track energy systematics are shown in Fig. 6.15,

along with their corresponding smoothed distributions for neutrinos and antineutrinos. The

very large fluctuations in case of antineutrinos is because of the fact that the antineutrino

sample is statistically limited, but the smoothing procedure gives a reasonable estimate of

the size of the error bands.
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Figure 6.15: Error bands used in the modelling of systematic uncertainties for the neutrinos
(left - top and bottom) and antineutrinos (right - top and bottom). The smoothed distribu-
tions are interpolated linearly to obtain a continuous function w(E) that is applied to shift
the FD predictions.

The FD reconstructed energy spectrum is obtained from the ND data by the matrix

method extrapolation. The best fit to data is calculated by minimising the log-likelihood

136



6.8. SENSITIVITY

function shown in equation 6.14:

−2 log λ = 2
n∑

i= 1

[
Pi −Di +Diln

(
Di

Pi

)]
+

3∑
j= 1

ε2j
σ2
j

(6.14)

where Pi is the expected number of events based on the FD prediction and Di is the number

of events from FD data in bin i.

The normalisation systematic is not energy dependent. Therefore, it is applied as a flat

4% systematic for antineutrinos and 1.3% for neutrinos. The penalty term is evaluated

at every value of the parameters, marginalising over the separate systematic parameters.

Allowing the systematics to float in the fit improves the goodness of fit and slightly increases

the size of confidence levels.

6.8 Sensitivity

Using the fitting method as explained above and including the three largest systematics

as nuisance parameters we can obtain the one-dimensional likelihood curves in g̃ZTµµ , g̃ZTττ ,

(cL)TTµµ , and (cL)TTττ . This is performed by marginalising over the parameters ∆m2 and

sin2 2θ, and fixing all other SME parameters to zero. Monte Carlo was generated with the

input parameters ∆m2=2.32×10−3eV 2, sin2 2θ=0.97, and all the SME parameters set to

zero. The red curve shows the statistics-only fits and the black curve shows the fits with the

systematics included. Since g̃ZTµµ and g̃ZTττ have identical sensitivity, we label them as g̃ZTαα .

From the figure it can be seen that the inclusion of systematics in the fit increases the size

of the likelihood curve slightly without changing the best-fit point. So the systematics are

expected to have very small effect on our measurement. From the sensitivity curves shown in

Fig. 6.16 we observe that we can make a 3σ measurement if the value of the parameters g̃ZTαα

is greater than 3.4×10−23 and that of (cL)TTµµ and (cL)TTττ if they are greater than 6×10−23.

Fig. 6.17 shows what the FD antineutrino spectrum would look like at the 3σ threshold of

sensitivity to these parameters.
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Figure 6.16: 1-dimensional -2∆ log λ distributions showing the fit to the parameters |g̃ZTαα |,
(cL)TTµµ , and (cL)TTττ for simulated data generated at g̃ZTµµ =g̃ZTττ =(cL)TTµµ =(cL)TTττ =0. The dashed
lines show the 1-σ, 2-σ, and 3-σ sensitivities for the parameters. The statistics-only sensitivity
is shown in red and that with the systematics included in the fit is shown in black.

6.9 Results

• The ND data is extrapolated using the beam matrix extrapolation and fitted for the

individual SME parameters as explained above. The best-fit for the SME coefficients

is very close to zero and at 3-σ confidence level we constrain

|g̃ZTµµ − g̃ZTττ | < 3.3× 10−23, and

−8.4× 10−23 < (cL)TTµµ − (cL)TTττ < 8× 10−23. (6.15)
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as shown in Fig. 6.18. The values for ∆m2 and sin2 2θ at the best-fit are consistent

with those in [97].

• We also obtain a two-dimensional likelihood contour obtained by simultaneously fitting

g̃ZTµµ − g̃ZTττ and ((cL)TTµµ −(cL)TTττ ); ∆m2 and sin2 2θ are again marginalised. The contour

in Fig. 6.19 shows the parameter space bound by these coefficients at 1-σ, 2-σ, and 3-σ

sensitivity.

The resulting FD simulated energy spectra, obtained by using the best fit values, are shown

in Fig. 6.20 along with the neutrino and antineutrino spectra. If we plot the FD spectra

expected using the 2-flavour oscillation model we can see that the spectra obtained using

the best fit parameters from the SME model are almost indistinguishable from the 2-flavour

prediction. So the data are consistent with no Lorentz and CPT violation. We can tabulate

the limits for the individual parameters as in shown Table. 6.3. These are first limits ever

measured in these coefficients.
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Figure 6.18: 1-dimensional 2∆ log λ distributions showing the fit to the parameters |g̃ZTαα |,
(cL)TTµµ , and (cL)TTττ . The dashed lines correspond to 1-σ, 2-σ and 3-σ confidence limits.

Coefficient 3σ Limit

|g̃ZTµµ | < 3.3×10−23

|g̃ZTττ | < 3.3×10−23

|(cL)TTµµ | or |(cL)ZZµµ | < 8.4×10−23

|(cL)TTττ | or |(cL)ZZττ | < 8.4×10−23

Table 6.3: Table showing the constraints on the individual SME parameters.
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limits.
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Figure 6.20: Far Detector distributions of selected antineutrino (left) and neutrino (right)
events. Black dots represent data, the dashed histogram shows the prediction in the absence
of oscillations, the dotted-dashed histogram shows the prediction at the values obtained in a
fit to 2-flavour oscillation model, and the solid histogram shows the prediction at the values
obtained in our fit to the SME model. The prediction obtained from a two flavour fit is very
similar to that obtained from the SME fit.
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Chapter 7

Summary and Outlook

The new measurements presented in this thesis have added to the world’s knowledge of

neutrino oscillations. The measurement of antineutrino oscillation parameters from relatively

high energy antineutrinos has helped in excluding all values of ∆m2
32 > 4.49 × 10−3eV2. It

also increased our confidence in our ability to select a small component of antineutrinos in

the beam dominated by backgrounds. Data from the MINOS experiment have also been

used to search for mixing between neutrinos and antineutrinos using a Lorentz and CPT

violating formalism derived from SME. No sign of such a mixing has been observed and the

data have been shown to be consistent with a 2-flavour prediction. This analysis helped

obtain world’s first limits on four time-independent SME coefficients.

MINOS finished data collection in its planned running in April, 2012. The detector

performance has been very reliable in over seven years of beam data collection while the

power of NuMI beam has continually increased. A total of 10.71 × 1020 protons on target

have been delivered in the neutrino-optimised mode, and 3.36 × 1020 protons on target in

the antineutrino-enhanced mode. Besides these MINOS has also collected 37.88 kt-years of

atmospheric neutrino interactions. By combining all available data using the three-flavour

formalism MINOS measured |∆m2
32| = [2.28 − 2.46] × 10−3eV2 (68% C.L.) and sin2 θ23 =

0.35 − 0.65 (90% C.L.) in the normal hierarchy, and |∆m2
32| = [2.32 − 2.53] × 10−3eV2
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(68% C.L.) and sin2 θ23 = 0.34 − 0.67 (90% C.L.) in the inverted hierarchy [153]. The

resulting contours are shown in Fig. 7.1. The data show a marginal preference for inverted

hierarchy [154]. MINOS constraints on ∆m2 are being used by the Daya Bay experiment in

their measurement of θ13.

Figure 7.1: The 68% and 90% confidence limits for the parameters |∆m2
32| and sin2 θ23.

Contours for both normal and inverted hierarchy are shown, and the −∆ logL surface is
calculated relative to the overall best-fit point. A marginal preference for inverted hierarchy
and lower octant is shown.

The parameter θ13 was previously considered to be either zero or very small. With the

new measurements confirming it to be relatively large it has opened up the possibility for a

non-zero δcp and hence CP violation in the neutrino sector. Other important and challenging

measurements that still need to be made are to determine the octant of θ23, resolve the
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mass hierarchy and to determine whether neutrinos are Dirac or Majorana particles. Long

baseline experiments like NOνA and T2K are capable of obtaining better constraints on mass

hierarchy and δcp. The NuMI beam has been upgraded to 700kW, delivering protons at higher

intensity and higher energy. MINOS will continue running as MINOS+ and, along with

NOνA experiment, use this higher intensity beam to resolve the puzzle of mass hierarchy,

δcp and the octant of atmospheric mixing parameters. There are ongoing experiments like

CUORE [155] searching for neutrinoless double beta decay. The observation of such a decay

would indicate that the neutrinos are Majorana particles. So far, no such signal has been

observed.

Apart from the accelerator based experiments, experiments like the Indian Neutrino

Observatory (INO) in Tamil Nadu, India, are also being built to study atmospheric neutrinos.

The INO would be a magnetised iron calorimeter with Resistive Plate Chambers (RPCs) as

the active detector. The physics capabilities of INO include resolution of mass hierarchy and

determination of the octant of θ23.

There are ongoing searches for sterile neutrinos by MINOS [114]. This will be continued

in MINOS+ and experiments like Microboone. The current νSM has also been extended

to look for non standard interactions [156] or search for extra dimensions [157]. Search for

Lorentz and CPT violation described in this thesis can be continued in the MINOS+ era as

well since higher energy of the beam will make it more sensitive to lower value of the SME

parameters, and stronger bounds can be obtained on them. Thus there is a huge potential

for surprises in this field and the future of neutrino physics is very bright.
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Appendix A

Light Level Studies for the Far

Detector

A.1 Introduction

This chapter describes the attenuation study done for the FD. The aim of the study is

to measure the change in light level obtained from the PMTs over a period of six years,

between 2004 and 2010. Cosmic ray muons are used for measuring the amount of light

incident on the PMTs. The scintillating light given out by the scintillator is carried by the

wavelength shifting fibres to the end of the strips. The clear fibres then transport the light

to the PMTs. The raw pulse height obtained from the PMTs is corrected for drifts, linearity

and strip-to-strip variations. The present study uses the attenuation code [158] to obtain

the attenuation curves.

A.2 Average Pulse Height

A.2.1 Strip Selection

As described in detail in Section 3.2.2 the FD consists of 486 octagonal steel planes. Out

of these only 484 planes are instrumented. The arrangement of the strips in the FD are
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A.3. PULSE HEIGHT RATIOS

shown in Fig. 3.11. Only the 8m strips in the FD are used for this study numbered from

56 to 136. This is because they are the longest strips in the detector and give a better

response to the light incident on them. The strips numbered 90 to 101 are removed since

they pass near the coil hole through the centre of the detector. The pulse height obtained

from the attenuation code is plotted as a function of the longitudinal track position along

the strip. It has been observed in the previous studies [105] that the light attenuation in

fibres has two components - a component with long attenuation length and the other with

short attenuation length. Thus the attenuation curves can be fitted quite well with a sum

of two exponentials Ae−k1x +Be−k2x, where x is the length along the strip and k1 and k2 are

inverse of attenuation lengths. A fit was performed for each strip and only the strips with

χ2/ndf between 0.7 and 2 to a fit to this function were selected. Same strips were selected

for the years 2004, 2007 and 2010.

A.2.2 Procedure

The pulse height for all the 8m strips in all the planes is averaged using 20 cm bins

of distance along strip to obtain the average pulse height. MINOS FD is read out from

both ends, also called East and West ends, for all scintillator strips oriented along U and

V directions. So the averaging is done separately for U East, U West, V East and V West

readouts. Then the attenuation plots from U West and V West strips are inverted and

the four views are combined together to obtain the average pulse height. This gives us the

average pulse height for the whole detector as a function of distance from the readout end.

Figures A.1 and A.2 show the average pulse height for the years 2004, 2007 and 2010.

A.3 Pulse Height Ratios

The average pulse height histograms are used to calculate the pulse height ratio for

the years 2010/2004, 2010/2007 and 2007/2004, as shown by figure A.3. The ratios are

normalised to have an average value of one. The dip observed in the middle shows that more
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Figure A.1: Average light output as a function of distance from the readout end for the year
2004. The light output from east and west ends for U-view and V-view strips have been
combined.
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Figure A.2: Average light output as a function of distance from the readout end for the years
2007(left) and 2010. The light output from east and west ends for U-view and V-view strips
have been combined.

light is lost at the centre of the strips as compared to that at the ends.

Furthermore, from the pulse height ratio at a distance of -3m and 3m from the centre of

the strip, we can calculate the change in light across the strips. Table A.1 shows the change

in the light level for U East, U West, V East and V West strips separately. After combining

the different views together, the change in the light level was calculated to be approximately

1.8% over a distance of 6m between the years 2004 and 2010.
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A.4. ATTENUATION LENGTHS
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Figure A.3: Ratio of average light output in the year 2010 to that in 2004 as a function of
distance from the readout end.

Years U East U West V East V West Average

2010 to 2004 2.192% 1.440% 1.156% 2.395% 1.797±0.641%
2010 to 2007 1.426% 0.599% 0.524% 1.144% 0.923±0.503%
2007 to 2004 1.312% 0.847% 0.636% 1.264% 0.882±0.430%

Table A.1: Change in light level over 6m. The change is calculated from the pulse height
ratio at 3m and -3m from the centre.

A.4 Attenuation Lengths

In order to obtain the change in attenuation lengths over time, the total pulse height

histogram is fitted with the function Ae−k1x + Be−k2x. The region from -2m to 2m from

the centre of the strip is removed while fitting to exclude the region with the dip. The

figures A.4, A.5 and A.6 show the fitted curves along with the reduced fit parameters. The

fit parameters indicate that the attenuation in the fibres is dominated by the component

with longer attenuation length, and that the longer attenuation lengths increase over time.

A.5 Light level at the Centre of the Detector

Since the light level is seen to be changing more rapidly at the centre of the detector it is

useful to quantify the total change at the centre relative to the outer edge of the detector. All

the strips in the FD are selected for this study. The pulse height in each strip at a particular
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A.5. LIGHT LEVEL AT THE CENTRE OF THE DETECTOR
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Figure A.4: Average light output as a function of distance from the readout end for the
year 2004. The light output is fitted to a function of the form Ae−k1x + Be−k2x. The fit
parameters are A = 250.87, B = 30.18, k1 = 0.12 × 10−2, k2 = 0.45. After removing the
region between -2m and 2m the reduced fit parameters are A = 294.09, B = 8.27 × 10−12,
k1 = 1.606× 10−1, k2 = 3.239× 10−1

position in a plane is averaged separately over all planes thus obtaining the attenuation

curves as a function of strip number in the plane. The pulse height ratio for the years

2010/2004, 2010/2007 and 2007/2004 is plotted as a function of strip number and distance

along the strip. To cancel the strip-to-strip variations, the ratio in each strip is normalised

to have an average value of 1 at the centre of the strip. The pulse heights from U East and

U West readouts are added together to obtain the average pulse height ratio as a function of

strip number for all U strips. Similarly, the pulse heights from V East and V West readouts

are added to obtain the average pulse height ratio as a function of strip number for all V

strips. The U and V views are plotted separately, as shown in figure A.7.

In order to combine the U and the V views, the strips in V view are rotated by 90 degrees

and then added to the strips in U view. This ensures that all the strips map the same spatial

region of the detector. Figure A.8 shows the combined histogram. The light loss at the

centre of the detector is quantified by plotting the pulse height ratio as a function of radial

position from the centre. Figure A.9 shows the pulse height ratio for the years 2010/2004.
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Figure A.5: Average light output as a function of distance from the readout end for the
year 2007. The light output is fitted to a function of the form Ae−k1x + Be−k2x. The fit
parameters are A = 230.39, B = 54.69, k1 = 0.10 × 10−2, k2 = 0.385. After removing the
region between -2m and 2m the reduced fit parameters are A = 300.31, B = 0.42 × 10−12,
k1 = 1.592× 10−1, k2 = 3.852× 10−1

It can be described reasonably well by a gaussian, and the light level at the centre of the

detector is observed to be approximately 2.6% lower than at the ends.

A.6 Summary

From the present study the light level obtained from the PMTs in the FD are observed

to change at a different rate in different parts of the detector. Overall, the increase in light

level is 1.8% in 6 years. It has also been observed that the centre of the strips are aging

more quickly than the edges. The difference in light level between the centre of the detector

and the edges is 2.6%. The reason for these observations is not clearly understood yet. A

hypothesis is that mechanical stresses in the scintillator could cause the light level to change

at different rates. More studies are underway to investigate the aging of the strips in the

FD.
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Figure A.6: Average light output as a function of distance from the readout end for the
year 2010. The light output is fitted to a function of the form Ae−k1x + Be−k2x. The fit
parameters are A = 226.06, B = 62.85, k1 = 8.9 × 10−2, k2 = 0.387. After removing the
region between -2m and 2m the reduced fit parameters are A = 307.49, B = 85.8 × 10−12,
k1 = 1.577× 10−1, k2 = 3.066× 10−1
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Figure A.7: Ratio of average light output in the year 2010 to that in 2004 as a function of
distance from the centre of the strips. (Left) The light output from the east and the west
ends for strips in U-view have been combined, (Right) The light output from the east and
the west ends for strips in U-view have been combined.
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Figure A.8: Ratio of average light output in 2010 and 2004 as a function of distance from
the centre of strips. The output from east and west readout ends of strips in both U-view
and V-view have been combined.
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Figure A.9: Ratio of light output in 2010 to 2004 as a function of radial distance from the
centre of the detector. The light level at the centre changes by 2.6% w.r.t the average.
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